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Nondestructive Characterization of
Two-Phase Metal - Matrix Materials

DAAL03-88-K-0096

Final Report

The Major goal of this program is to study methods for the nondestructive characterization of

mechanical properties of two-phase metal-matrix composites such as discontinuous SiC-reinforced

aluminum alloys. The methods to be studied are based on the physical nonlinear elastic behavior

of solids and utilize measurements of the elastic as well as the acoustoelastic constants. The

objectives are to establish both experimentally and theoretically relationships between those

parameters which can be measured nondestructively and the percentages of second phase in

two-rPb Tase systems. Mechanical properties of these systems are derived from the presence of

reinforcement second phase in the matrix.

The research accomplished during contract No. DAALO3-88-K-0096 of The Army Research

Office program is documented in details in 4 theses (1 - 4) and 8 papers (5 - 12). Abstracts of

these theses and reprints or preprints of these papers are attached in appendix A. The major

accomplishments obtained under this program are, however, summarized in the following.

A. Texture

Texture is the reason for the direction dependence of materials properties. It is developed

during the plastic deformation and heat treatment during manufacturing. It is characterized by the

fourth-order expansion coefficients of the orientation distribution function (ODF), C1 14 and C12
4

and C134. In two-phase materials, however, the situation is more complicated where the

properties, the shape, the volume fraction and the orientation of each phase influence the

macroscopic behavior.

In this study (1, 5, 6), an ultrasonic method is developed for the nondestructive

characterization of texture in metal-matrix composites. The method utilizes the measurements of



the six independent ultrasonic velocities Vij and the formulation given by Bunge. The examined

composites are the siicon carbide (Si-C)-particle-reinforced aluminum 8091, 7094, and 6061

metal-matrix composites. The fourth-order expansion coefficients of the orientation distribution

function are found to change linearly as a function of the SiC content. Also in this study, the

relationship between elastic anistropy and texture in metal-matrix composites has been developed

under certain conditions. Linear correlations between anisotropy described by Young's moduli

and texture determined by orientation distribution function expansion coefficients are obtained, and

found to confirm developed relationships for two-phase metal-matrix composites. These results

show that ultrasonic measurements provide a viable technique for the characterization of texture

and elastic anisotropy in these materials.

B. Elastic Properties and Elastic Anisotropy

In this investigation (2, 7, 8, 11), longitudinal and shear ultrasonic velocities have been

measured in aluminum based metal matrix composites containing either SiC-particles or alumina

fibers and particles as the reinforcements. Three types (extruded, pressed, squeeze cast) of

composites have been investigated. Also, based on microstructural studies, models have been

developed in order to predict and explain the elastic properties of these composites. From the

experimental measurements as well as the comparison between measured and calculated elastic

moduli the following conclusions are obtained.

1. Extruded Composites

a) For relatively low volume percentage of reinforcement, up to 20%, the elastic moduli

increase linearly with SiC-particle content.

b) The overall increase in elastic moduli due to the reinforcement can be well predicted by a

model assuming dilute concentration of particles.

c) The extrusion direction is elastically stiffer than the other two directions.

d) The higher value of Young's modulus along the extrusion direction is partly due to the

aligned particle free regions created during manufacturing, and partly due to texture in the

aluminum matrix.
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2. Pressed Composites

a) For the high volume fraction of SiC-particles, up to 40%, the increase in elastic moduli

with particle content is not linear and deviates significantly towards higher values.

b) The model assuming dilute concentration of particles fails completely to predict the

increase in elastic moduli.

c) The high values in elastic moduli can be attributed to the increased interaction between

particles as the particle content becomes higher.

d) The elastic moduli in the compression direction is lower than in the directions in the plane of

the plate.

3. Squeeze Cast Composites

a) The elastic moduli increase with the alumina particle content, whereas the elastic

anisotropies between directions in the plane of fibers and normal to this plane decrease with

the particle content.

b) The overall increase in elastic moduli as well as the elastic anisotropies can be predicted by

a model assuming no interaction between particles and fibers.

c) The planar-random alignment of fibers makes the composites stiffer in that plane.

C. Manufacturing

In this work, the powder metallurgy process has been successfully implemented in the processing

of aluminum metal matrix composites containing up to 30 volume percent of silicon carbide

particulate, and up to 20 volume percent silicon carbide whiskers (3). The composites processed

have been densified to above 97 percent of their theoretical density, which is comparable to those

obtained from commercial sources. The stiffness properties of these composites have been

evaluated using flexure and compression mechanical tests as well as ultrasonic measurements, and

are found to match those of commerical composites.

Theoretical calculations of the Young's modulus based on the Hashin-Strikman and the

Eshelby models are found to be in good agreement with the experimental results for particulate

content of 15 percent or less. At higher percentages of reinforcement, however, both models

3



underpredict the stiffnesses. For the whisker reinforced composites, the Eshelby model predicts

the stiffnesses better than the shear large model. The stiffnesses predicted by the composite

cylinders model are also found to agree pretty well with experimental results.

D. Nonlinear elastic Effects

In this study, the temperature dependances of nonlinear effects effects are investigated by

measuring the acoustoelastic constants at different temperatures using ultrasonic time of flight

measurements (4, 9, 12). These constants are determined in the aluminum alloys AlMg 3, 7064,

and 8091 as well as in SiC-particle reinforced metal matrix composites based on the aluminum

alloys 7064 and 8091. In the metal matrix composite specimens, the acoustic nonlinearity

parameter is also measured using the harmonic generation technique. The results show the

following.

a) In all materials investigated, the acoustoelastic constants show a linear temperature

dependance. In single phase alloys, the third order elastic constants, calculated from

acoustoelastic constants show an increase in magnitude for the constants 1 and m with temperature.

However, the increase in the constant I is stronger. The third order elastic constant n is not

significantly influenced by temperature. In the case of the two phase metal matrix composites,

temperature changes affect the three third order elastic constants decreases with increasing

temperature.

b) The temperature dependence of the acoustoelastic effect confirms the linear relationship

between stresses in the material and the temperature dependance of the longitudinal velocity found

by Salama and Long. The parameter K, which characterizes the magnitude of the

stress-temperature dependance of ultrasonic velocities, is found to be significantly influenced by

the base material as well as the alloying elements contained.

c) The acoustic nonlinearity parameter, which is a measure for the material's deviation from the

ideal Hookean behavior, is calculated using the second and third order elastic constants for all

specimens investigated. Similar to the behavior of the parameter K, the value of the nonlinearity

parameter is found to depend strongly on the base material as well as the reinforcements.
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d) In two phase materials, it is not sufficient to realate changes in the nonlinearity parameter to

lattice distortions only. Since the determination of P3 involves the ratio between third and second

order elastic constants, changes in the elastic moduli, due to the presence of second phase, are to

be taken into account. In the case of coherent precipitates, where increases in the elastic moduli are

negligible, the behavior of the nonlinearity parameter is dominated by the lattice distortions. Earlier

studies by Razvi et al. revealed an increase in the nonlinearity parameter with the volume fraction

of second phase particles in such materials. However, in the metal matrix composites investigated

in the present study, the behavior of the nonlinearity parameter is dominated by the increase of the

elastic moduli.

e) Values of calculated nonlinearity parameters as well as those directly measured are found to

decrease linearly with increasing content of second phase particles. Also the presence of

reinforcement particles changes the temperature dependance of the nonlinearity parameter in the

metal-matrix composites. In contrast to the behavior in single phase alloys, its value decreases

with increasing temperature. Changes in the distortion of the matrix are believed to be responsible

for this opposite behavior. A temperature increase leads to relaxation of the thermal stresses which

are always present in metal matrix composites, due to the mismatch of the coefficients of thermal

expansion of the matrix and the reinforcement materials. The relaxation of these stresses reduces

the distortion of the matrix and, thus, the value of the nonlinearity parameter decreases.

E. Scanning Acoustic Microscope (SAM) Studies

In addition to the above macroscopic studies, preliminary acoustic microscopy studies (13)

on samples of AI-8091 and AI-7064 show that the SAM has no difficulty at 1.0 GHz in resolving

the particles in both composites. The resolution in the GHz range is on the order of a micron, so

that detection of the particles is not a difficulty. In the characterization of the interface the

assumption is made that changes in the stress field will produce measurable changes in the region

of the interface and there will be a corresponding change in the stress between the two phases due

to the difference in the thermally induced strain between them. This will cause changes in the

sound propagation properties in the stressed regions. Although these changes are small they
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depend on the properties of the interface and can be measured.

The affected region can range from nanometers to micrometers in thickness even in the GHz

range and the properties will vary throughout only one acoustic wavelength. Point to point

changes along the boundary, however, cause significant changes in the shape of the fringe pattern

due to the changing of the boundary conditions at the reflecting interface. In addition, many of the

particles exhibit surface wave scattering fringes over several wavelengths, indicating higher phase

sensitivity.
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Abstract

Many important material properties are of nonlinear nature. Among them are the stress-
temperature dependance of ultrasonic velocities, the distortion of elastic waves by the
generation of higher harmonics, and the thermal expansion. These effects are characterized
quantitatively by measurements of the acoustoelastic constants, the acoustic nonlinearity
parameter, and the coefficient of thermal expansion.

In this study, the temperature dependances of nonlinear ultrasonic effects are
investigated in the cemented carbide WC-Co, the ferritic steel 24 CrMoV 5 5, the austenitic

steel X6 CrNi 18 11, the aluminum alloys A1Mg 3, Al 7064 and Al 8091 as well as in
metal-matrix composites consisting of Al 7064 and Al 8091 matrices and SiC-particles.
The results show that the magnitude of acoustic nonlinearity depends on the base material,
alloying elements, and microstructure. It increases with the temperature in single phase
materials whereas it decreases in metal-matrix composites. The various contributions to the
acoustic nonlinearity are analyzed qualitatively and possible expla-'ations for its behavior in

metal-matrix composites are discussed.
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Abstract

Textures or preferred orientations of single crystals in polycrystalline materials are

developed by heat treatment and deformation processes like rolling, drawing and

extrusion. Thus magnetic, elastic and plastic properties become directionally dependent.

This can yield desirable behavior, but it can have also negative effects. In both cases a

nondestructive determination of the texture and its consequences for materials behavior is

of great interest.

In this study texture is analyzed by determining the fourth-order expansion

coefficients of the orientation distribution function from the measured ultrasonic

velocities of different wave modes. The results obtained for rolled ferritic steel sheets,

rolled ferritic steel plates and for extruded metal-matrix composites of the aluminium

alloys Al-8091, Al-7064 and A1-6061 with silicon carbide particle reinforcements show

that ultrasonics provide an efficient nondestructive method of texture analysis in the bulk

as well as on the surface of these materials. The expansion coefficients determined for

the ferritic steels agree qualitatively with those determined by x-ray diffraction which is a

common nondestructive technique for texture analysis. For the metal-matrix composites

the expansion coefficients have been determined under the assumption that only the

Al-matrix is textured. The results also show that the fourth-order expansion coefficients

allow the evaluation of the elastic and the plastic behavior of the examined specimens.

Uli.
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ABSTRACT

The effects of varying the reinforcement type and content on the elastic behavior of
aluminum / silicon carbide composites have been investigated in order to develop
relationships to be used in controlling the integrity of the composites. A canless powder
metallurgy (PM) process was successfully developed for the in-house manufacture of the
MMC specimens . Composite specimens with up to 30 v/o particulates and up to 20 v/o
whiskers were fabricated using Al 6061 as the base metal. The elastic moduli of these
MMCs were characterized using ultrasonic velocity measurements as well as mechanical
testing involving flexural and compressive tests. The measured moduli were also
compared with model predictions.

The results indicate that the addition of the particulate or the whisker reinforcements
increase the elastic moduli as well as the elastic anisotropy of the MMCs. The composites
were elastically stiffer in the plane perpendicular to the hot pressing direction than in the
pressing direction and also exhibited transverse isotropy about the pressing axis. While the
anisotropy of the particulate reinforced MMCs is attributed to the uneven distribution of the
reinforcement along the different directions, the anisotropy of the whisker reinforced MMC
is traced to the planar orientation of the whiskers in the plane perpendicular to the pressing
direction. Also, it is found that the substitution of particulate reinforcement by whiskers
does not improve the elastic stiffness of the MMCs for this method of composite
manufacture.
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ABSTRACT

Conventionally, metal matrix composites (MMC) are reinforced with

either particles or fibers, but lately, a new class of composites has emerged,

where a mixture of particles and fibers is used as a reinforcement. The particles

are present to improve the overall mechanical and thermal properties, whereas

the fibers introduce the directionality often desired in some applications.

The elastic behavior of three composites with different matrices and

volume fraction of particles (9,13 and 17%), but the same fiber content (6%),

has been characterized using ultrasonic velocity measurements. The results

show that the elastic moduli increase with particle content and that the

composites are elastically stiffer in the directions of the plane of the fibers than

in the direction normal to that plane.

A model is developed to explain the observed elastic moduli of these

composites. This model uses the results of theories presented by Ledbetter and

Datta, for spherical inclusions, and by Hashin and Rosen, for aligned fibers. It

also includes an average procedure suggested by Christensen and Waals. The

agreement between measured and calculated elastic moduli !s found to be very

good and the elastic anisotropies observed in these composites could also be

predicted.

Elastic moduli are also determined using ultrasonic velocity

measurements for two series of extruded MMC's and one series of pressed

MMC's. These composites are reinforced with SiC-particles only. The elastic

moduli as well as the elastic anisotropies in these composites could be

explained using combinations and/or special cases of the theories mentioned

above.
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Texture of Metal-Matrix Composites
by Ultrasonic Velocity Measurements

M. Spies* and K. Salama

Department of Mechanical Engineering, University of Houston. Houston. TX 77204. USA

Abstract. An ultrasonic method is developed for the nondestructive characterization of
texture in metal-matrix composites. In this approach, it is assumed that the presence of
reinforcement particles changes the elastic properties of the composite but only the
texture of the matrix. The method utilizes the measurements of the six independent
ultrasonic velocities Vj) and the formulation given by Bunge. The examined composites
are the silicon carbide (SiC)-particle-reinforced aluminum 8091. 7064, and 6061 metal-
matrix composites. The fourth-order expansion coefficients of the orientation distribu-
tion function are determined as a function of the SiC content in these composites. The
results show that the expansion coefficient, change with the presence of SiC where the
coefficients C," and C.V increase as the volume fruction of SiC is increased and the
coefficient C42 is zero in all composites examined. The analysis of these results indicates
that ultrasonics can provide a promising technique for tho texture characterization ot'
metal-matrix composites.

Introduction

Texture is the orientation distribution of the single crystals in the polycrystal-
line aggregate. A textured polycrystal is elastically anisotropic because the
elastic properties of a single crystal are directionally dependent. Because of the
texture, the single crystal anisotropies do not vanish when averaged, thus the
polycrystal looses its quasi-isotropy. Most structural materials are polycrystal-
line aggregates and their exposure to plastic deformation and heat treatment
during manufacturing leads to the alignment of single crystals relative to the
forming geometry. This development of preferred orientation is the main rea-
son for the anisotropic behavior in these materials. The texture is characterized
by the fourth-order expansion coefficients of the orientation distribution func-
tion (ODF). These three coefficients allowv a satisfactory evaluation of the
elastic as well as the plastic behavior of polycrystaline aggregates. as has been

l'ermanent address: Instilut fur /ersiorungsl'reie Ilrul'verfiihren, Saarbrucken, FRG.
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shown by several studies (e.g.. 11-51). This situation. however, is more compli-
cated in the case of two-phase or multiphase materials, where the properties.
the shape. the volume fraction, and the orientation of each phase influence the
macroscopic behavior.

In metal-matrix composites a ductile metal and a high strength reinforce-
ment are combined to provide a composite of high strength and toughness.
Since many of these properties are characteristic of the bulk. ultrasonics have
been shown to provide promising nondestructive methods for the characteriza-
tion of metal-matrix composites [6].

In this study. an ultrasonic method is developed for the nondestructive
characterization of texture in metal-matrix composites. Measurements of ultra-
sonic velocities are used to determine the texture in the silicon carbide (SiC)-
reinforced 8091. 7064. and 6061 aluminum composites.

Quantitative Texture Analysis Usii~g Ultrasonics

Orientation Distribh1 ion Function

Texture is mathematically described by the ODF. This function determines the
probability of finding a single crystal in the polycrystalline sample with a certain
orientation with respect lo the sample orientations, given by the axes of the
sample fixed coordinate* systermn. According to Bunge [71. the ODF can be
written as a series expansion into symmetrical generalized spherical harmonics
as

I 1 M I0 '- I

where g is the orientation, the J'' are symmetrical generalized spherical har-
monics and the C1" are the expansion coefficients. The upper limits M(l) and
NO) depend on I as well as the crystal and sample symmetry, respectively. The
orthonormal function system P," is invariant towards all rotations of the sample
symmetry (indicated by the right dot) and the crystal symmetry (indicated by
the left two dots). In first approximation only the three fourth-order expansion
coefficients C1'. C42 and C- need to be considered for texture evaluation in
cubic materials with orthorhombic sample symmetry i1, 81. These three coeffi-
cients can be used to characterize both the elastic and the plastic behavior of
these materials. The fourth-order coefficients in the Roe-notation [9] arc called
W".) W420. and W44,1 and are related to Bunge's coefficients by the following
expression:

I PT(
W4 20 i - V F2 (4-(-

w.,, :- [7"
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Ultrasonic" V~elocit\, Relationshzips

Inserting the elastic constants of the textured polycrystal. given by Bunge IlI
for cubic crystal structure, into Christoffel's equation for the orthorhombic
sample, the following relationships between the velocities of ultrasonic waves
Vi. and the expansior- coefficients C," result as

C Is - , I \'; - Cc•2 4

1 If C (( - -v- ~ 14

= -; (*-cV3)

PV 4,4 ? + C \`3 C1 ) V,

0 ,.2 15 70 \ c") -

pi 44 ( - ( c~ - (1 c::)

where p is the density and cI . c_,. and c..4 are the elastic constants of the cubic
single crystal and c -c '_ -c 2c'. In these relationships the velocity is
characterized by two subscripts. The first indicates the propagation direction.
while the second indicates the polarization directiou of the wave. 1. 2. and 3
designate the axes in a right-handed Coordinate system as shown in Fig. I.

The Lamd constants X and a for the untextured polycrystal ((14 = C4 =

C41 = 0) can be expressed as

I 2 2
. C.X4 -f- I" 2j.1 = 11 -- 5 Xc. I- c.

For the isotropic case ( = 0). the shear wave velocity VX as well as the
longitudinal wave velocity Vi will be the same in all directions. and

\3 2

VV

V13  V2.

V .. FIg. I. Velocity designations f\or

free ultrasotij waves.
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Table 1. Chemical composition of aluminium alloyvs and volhme percentage of
SiC reinforcement of the MNIC-specimens

Alloying Elements

Alloy Si I-F Cu Mg Zr Li Zn Cr Co Al

8091 0.02 0.01 1.90 0.80 0.11 2.701 - - - rein
7064 0.05 0.10 2.00 2.30 0.210 - 7.1 0) ..12 0.22 rein

6061 0.71 0.29 0.21 0.86 - - 0. 10 0.06 - remn

Specimens

8091 0 0e, SIC 8091 -, I0 .; SiC 8091 15'; SiC
7064 f 0' Si C 7064 - 5r SiC 7064 201; SiC

6061 1'-:; SiC 6061 20'; SiC

t~li = •l•= A --- 2.

pl{= (44= #

A further usefid expression which can be obtained from Eqs. (3) is

i~•',- •_-- Xl =,, 2 • 4
- = ( I .(.~.(4)

Experitnent

The metal-matrix composites examined in this investigation are the aluminium
alloys A1-8091. AI-7064. and AI-6061 containing up to 20% volume fraction of
SiC particles. The chemical compositions of these alloys and the volume per-
centages of the SiC reinforcement are shown in Table 1. The A1-809i and Al-
7064 composites werc received as extruded rods of 25 mm in diameter. while
the AI-6061 composites were received as extruded bars of 16 mm in thickness
and 50 mm in width. Prismatic specimens 15 to 18 mm wide and 30 mm long
were machined such that the length direction was parallel to the extrusion
direction. Opposite faces were machined flat and parallel to within ±0.025 mm.
All these specimens were examined in the as-received corndition.

In order to determine the ODF-expansion coefficient.;. ultrasonic velocity
measurements are performed using the pulse-echo-ovctiap method. which is
described in detail by Papadakis 1101. The system used in this investigation
consists of an ultrasound apparatus which gen:.,,tes pulses of approximately I
,s duration and of variable repetition rate. These pulses are impressed on a
commercial transducer of a fundamental frequencV of 5 MHz which is acousti-
cally bonded to the specimen. The reflected echoes. if. are received by the
same trans(hicer. amplified, and displayed on a screen of an oscilloscope. T'wo
of the displayed echoes are then chosen and exactly overlapped by critically
adjusting the flrquLCC of t C.W. oscillator and the division factor on a decade

divider. The frequency. I. accurately determined by an electronic counter is
employed to compute the ultrasonic velocity using the relationship V = ,t'I
where s is the path length of the ultrasonic wave. The system is capable of
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measuring changes in the ultrasonic velocity to an accuracy of better than I
part in 105. while the inaccuracy of measuring both the longitudinal and the
shear velocities is estimated to be 0.3%.

Results

Reduction of Data

The conversion of the measured velocity data to the texture expansion coeffi-
cients is very critical. Equations (3). which relate the velocities V,0 of shear and
longitudinal waves with different polarization and propagation directions to the
fourth-order expansion coefficients, provide a variety of relationships to deter-
mine these coefficients. These relationships are shown in Table 2. In order to
select-the relationships from which the coefficients are to be determined, the
propagation of errors involved in the procedure of reducing the measured data
to the physically significant quantities becomes very important.

From Table 2 one can see that there are three relationships which deter-
mine C4' and four equations to determine each of' C41 and C41. The usual proce-
dure to determine these coefficients from the relationships shown in Table 2 is
to use the least-squares analysis. However, in order to keep the number of
velocities to be measured low and to reduce the effect of propagation of errors.
the following procedure is employed:

I. We select relationships which do not require the absolute values of veloci-
ties and only require the differences in these velocities. Thus errors in the

'Fable 2. Different relationships for the determination of the'expansion coefficients C,•

C.= AlfpV13 - (X + 2g)l (a

C," = A, 1 2A - p(V2, + V1/)0 (b)

C4" = AIp(V- 1 + V2, + 2V2,) - 2(A + 20)1 (c)

C12 = A 2p(V2 1 - .d)

(T' = A2p(Vz, - V•I) (1)
C1 = A,[[X + 4g - p(V2. + 2Vi.)l If)

CV12 = A.2(X + 4,u) - p(Vi, + V.- 2V,. + 2V 2,)J (g)

C," = A160. -3 + p(V- 8Vi.)I h)

C"- = A•[100 - p(V21, + V/42 + 8VjzJ (i)

C411 = Aa[o(4V1 + 4V!, - 3 V 3) - 5 X + 2p, iJi

CQ A~p(4V-'l + 4V2, + 3V21 + 3V.'2) 2(4X + I 11l0 (k)

where AI = -•-•/, A,= Al.= AA.
8C 7' -
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velocity calculations, which are due to measurements of the path length, are
cancelled out.

2. We use relationships which involve the lowest number of velocities.
3. We select relationships which require only ratios of elastic constants. If this

is not possible (as in the cases of C4 and C413) the equations which require the
lowest number of elastic constants are used.

4. We use the set of relationships which requires the lowest number of mea-
surements necessary to determine the coefficient.

The relationships which best satisfy the above procedure are:

Cl, 1 210 v 1

8,' \ 7 12) - p( '1  ± V )]. (53

c. 10 '- ,2 - V2))

210 ' ,8\3-5c \i [6ý - - p(V•i, - 8Vj 2)). (7)

Replacing the density p 1y the expression in Eq. (4) yields

(111 21o 3. 2,A - 2c'.4) ? 1)

- \ -" - 2 7 •, + V8'

C _ 21o ,3 WI'I - -('44) (9)
4\ ic V73 - 12

210 3 ' - 8v2,
C " 6/A - A. - 2 c44c , - (10)

It must be noted that Eq. (A) of Table 2 also satisfies options 1-4 listed above.
Replacing the density p by the expression in Eq. (4). the resulting expression
for CV leads to the same values obtained from Eq. (8).

Equations (8-10) are valid only for materials with cubic crystal structure.
and in order to apply these equations to the composites examined in this work.
the following assumptions are made: I) The presence of the SiC-particles
changes the elastic properties of the composite but only the texture of the
matrix: 2) The SiC-particles are randomly distributed in the specimen without
any preferred orientation: 3) The ultrasonic wavelength (frequency used is 5
MHz) is much larger than the average particle dimension (2-4 gm) so that no
dispersion effects occur.

D)etermninattion o.f thc l.xpansio ('olticientws (2'

The geometry of the specimens used in 1his investigation allows the measure-
ments of all nine ultrasonic wave velocities V;, (3 different waves in 3 orthogo-
nal directions). In these measurements the 3-direction is taken to be parallel to
the extrusion direction of the samples (see Fig. I). The velocities measured arc
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Table 3. Ultrasonic vclocities of' tie AI-8091..,\1-7064. anld ..- 6 1 IMC
"~Pecinlerh'

8091 140911 8091) 70064 '7064 7064 6061 64161
01,"; 0";IF 15"; •I': 5 . 2I " 4 15",.; 2I :

SiC sic SiC sic SiC, SiC SiC SiC

I'V 6612 60922 7050 '238 (,731 (I911 6817 7165

1,, 6606 61913 7011 ,6233 61734 6937 6780 7103

6 564 7043 7108 6 194 6920 7108 0689 7207

". 3484 37081 3816 30159 3435 3584 3413 3,695

VII 3477 37 02 18105 30)66 3440 356 7 3418 3701
.3467 3721 3834 3082 3479 3641 3438 3731
_1 3480 3736 3842 31)57 34.69 3636 1442 3733

1 3472 3733 3548 3051 3470 317 3446 37410

-1 3452 3736 3844 311062 3469 36401 3435 3774

VelocitieC avc shown in uinit. of In.,.

listed in Table 3 and are found to be reproducible to within 0.3%. Because of
the rotational axis. the corresponding velocities 1/V0 and V,2, V12 and V,1 . V'1
and V':. and V,. and Vv2 are averaged according to the rotational symmetry
around the extrusion axis.

The ultrasonic velocities in the textured Al-matrix (which has a face-cen-
tered cubic crystal structure) are then computed using the equal stress condi-
tion and the velocities measured. This condition assumes that the Al-crystal-
lites and the SiC-particles are subjected to the same stress. With x denoting the
volume percentage of SiC. the equal stress condition can be written as

.X, r = . + (I - .r M .i '"

where M,,mp MAI,. and Msic are the elastic moduli of the composite, the matrix
and the reinforcement, respectively. Using Eq. (II) and the well-known rela-
tionships between elastic moduli and ultrasonic velocities, the velocities lVi in
the Al-matrix can be expressed as

1 1 (1 - X)P,+,,,P( V..,r, ,sic (' sic "

1 PAI PSiC W2SIC - X"srnP()mP)2 ] 1 12

In the calculations of V-'I the density of the composite is determined according
to the law of mixture

Imp = I - . Al + .PSiC. 131

Only small deviations of the densities calculated using Eq. (13) and of the
measured densities are Found for the specimens examined in this work I 111. The
densities used in the calculations are 2524 kg/mr3 for AI-8091, 2864 kg/nl3 for Al-
7064. 2710 kg/m 3 for AI-6061 [121, and 3200 kg/ni' for SiC 1131. The shear and
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Table 4. Expansion coefficicnts ("h' of the Al-8091. AI-7064 and AI-6061 MMC
specimnens,

8091 8091 8091 7064 7064 7104 6061 6061
+01; + W('o 15i +01; + 15';; 4 20'r' + 15"if + 20";

SiC SiC SiC SiC SiC SiC SiC SiC

(c" 2.205 I .573 3.532 2.35N 3.15.5 5.352 3.295 7.404
(,I,4 1 0 0 011 11 .

(7 2.194 -0.431 1.0134 1.96_" 1.26-17 2.175 1.913 4.636

3-direction cxstrut:on direction.

the longitudinal wave velocities Vs and V, for SiC are obtained from the rela-
tionships V p 1*/p =-- (,\ 4 2g)ip and v = X/l2(, + A)l. where v, is the
Poisson's ratio = 0.19 and p = 165.5 GPa 113).

The single crystal values used in Eqs. (8)-(10) are:

.11.1 GPa. c2, 52.5 G-t. C44 = 3.5 GPa. c = -6.4 GPa for AI-8091 [141.

cI, = 107.3 GPa. t' = 60.3 GPa. c44 = 28.0 GPa. c = -9.0 GPa for Al-7064 1151.

- 108.0 Old. 02. - 6.0 GPa. . >.3 GPa. c . - 10.6 Gila for A1-6061 [161.

The expansion coefficients (C. are then determined using Eqs. (8-10). and their
results are shown in Table 4. Because of the rotational symmetry of the sam-
ples. the coefficient C4V is found to be zero for all specimens.

Discussion

The expansion coefficients C,'( and CV are plotted versus the volume percent-
age of SiC in Fig. 2. From the figure one can see that there is first a slight
decrease in these coefficients followed by a linear increase up to 20 volume
percent of SiC. These plots also show that the presence of SiC leads to consid-
erable changes in these expansion coefficients and thus in the texture of the Al-
matrix.

The determination of C4" is known to be critical because it requires absolute
velocity measurements. Therefore it must be established whether the deter-
mined values for C4" are reasonable. This can be done by considering the two
extreme cases of a (I I ])-fiber texture and a (100)-fiber texture. which are usu-
ally observed in extruded aluminium 1171. Because of their rotational symme-
trv. fiber lextures are sufficiently described hy one .xpansion coefficient.
namely. C('. whereas C." and C43 are zero 1181. In the case of an ideal (I I 1)-fiber
texture, where the crystallographic directions with the highest ultrasonic veloc-
ity: lie along the extrusion direction. the value of C11 is found to be equal to
-4.575. On the other hand. for ani deal (100)-fiber texture. where the crystallo-
graphic direction with the lowest ultrasonic velocity lies along the extrusion
direction. the value of'CV' is +6.887. These values, which are obtained from the
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results of pure aluminium, agree very well with C4" z -4.570 and C"1 - +6.770
given by Bunge [18]. These two '*extreme" values constitute the upper and the
lower bounds for C4" of any texture in extruded aluminium.

The values obtained in this work (Table 4) lie within these bounds. except
for the AI-6061 + 20% SiC composite. This agrees with the results reported in
reference [II] which show that the elastic behavior of all Al-SiC composites
examined in this work can be approximately described by the equal stress
condition represented by Eq. (II1). with the exception of the AI-6061 + 20% SiC
composite which shows a large deviation from that conldition. The velocities V
in the Ai-matrix were also determined using the equal strain condition

l'l,mp -f ll -=.H') .0Af+.\l "- V.'..

which assumes that the Al-crystallites and the SiC-particles undergo the same
strain. The coefficients resulting from these calculations are found to lie far
outside the bounds given above, which again agrees with the results in refer-
ence I I l1.

The departure of the elastic behavior of the AI-6061 + 20% SiC composite
from the equal stress condition may be due to some degree of hydrostatic stress
generated within the MMC specimen. In this case, the matrix material in the
composite tends to deform at a lower stress than the reinforcement because the
matrix material is softer than the reinforcing material. If the matrix material is
rigidly coupled with the reinforcement, it is restricted from deforming in the
way it would if it were alone and causes hydrostatic stresses to be generated
within the matrix material. The exact magnitude of this effect is unknown and
rather complex, but it is a function of the mean free path in the matrix and the
ratio of the elastic constants of the constituents 1191. In general the mean free
path in the matrix varies from region to region, and therefore no simple ratio
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can be predicted. Thus the extent of deviation of the elastic nioduli form the
equal stress condition can vary from specimen to specimen.

Since the mean free path in the matrix decreases with increasing volume
percentage of the reinforcing phase, the limitation of the approach presented in
this work to composites with "'small" fractions of rminforcemcnts is apparent.
Nevertheless, in these cases reasonable results arc obtained up to a volume
fraction of 209('. From Table 4 and Fig. 2 one can see that the coefficients
determined lie within the bounds given above and that the coefficients of' these
specimens, which contain the same volume percentage of SiC lie close to-
gether. indicating that these specimens contain similar textures. Figure 2 also
indicates that the textures. which are only due to the extrusion process (0/;
SiC). are modified by the addition of thc SiC-reinforcements in a similar way. It'
it is assumed that the examined specimens contain a mixture of a (1110- and a
(100)-fiber texture. which is usually observed in extruded aluminium 1171. the
increase in the expansion coefficient C4" with increasing volume percentage of
SiC indicates that the (100)-directions of the AI-crystallites align more and more
towards the extrusion direction as the SiC-concentration is increased.

From above, it can be seen that ultrasonic velocity measurements can be
used for the nondestructive characterization of texture in metal-matrix com-
posites. The results also indicate that the assumptions made concerning the
effects of' reinforcement particles on the texture in these materials are reason-
able.
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Relationship between elastic anisotropy and
texture in metal--matrix composites
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The relationship between elastic anisotropy and texture in two-phase metal matrix composites
has been developed under certain conditions. Using measurements of the six independent
Ultrasonic velocities V,1 in sam pies of the aluminium alloys 8091 and 7064 containing up to
20%/ SIC particles and the formulation given by Bunge, the fourth-order expansion
coefficients of the orientation distribution function are determined. The Young's moduli in
different directions are also obtained from ultrasonic velocity measurements. Linear correlations
between anisotropy described by Young's moduli and texture determined by orientation
distribution function expansion coefficients are obtained, and confirm developed relationships
for two-phase metal matrix composites. This result shows that ultrasonic measurements
provide a technique for the characterization of texture and elastic anisotropy in these
materials.

Keywords: metal-matrix composites; elastic anisotropy; texture

Introduction &S a1 function01 of the oILume percenideL_ of SiC -reintorccnicnt.
and found to lie w~ithin uci, en hOImnt's.

\tot ~ ucimil mterak repolerxtalineaggegaes In this st udi, the fou~rthi-order expansoio coelliicienits
and thir~I exposuLre to plastic deformation and hecat otneiKhi
ttreatment dutrine, 11manufetur-11il' leaLS to the alivumnent of' oband-,t teehniqueI are us~ed to examine relationships
lie ,Iti nflc crsstakl relatix e to the forming geometicrx. ths between texturle andl Young 11ý modulus1.' in the SiC reinforced

dcxof refrre orenttio8091) anld 7064 aLTlumi iIII1 ci omposites. N\&Ieasu rementS 0 of(Iiclopiient Ofpeeidoinainor texture is, the ultratsonic xeloeities are used to determine the YoNi
niateri hals. fhe texueic mthemaý,ticallx N eIM rI0bcd Of the's modulu- in dilicrent diroct ionsý of' the com~posites.

0riciititmIi01 distIribution uncIon1001 ION- ). hUieh determine',"

theprbaili o lndie sngl exsal n heaggegte Ultrasonic texture analysis
xxiit ,i cria lin orientaition i.lt h respeect to the samle-li
Lconict rx- I ie el,it,,ie heliax our of polycr~stalline Orientation distribution function
Inalterlls is decter11mind h\ the three fouirth-order
c\11,11n1,1011 cocificien is oft lie ( i)I)[. [hI t II a It..tIori. liowex ier. VeCxt Ure IS deCSri bhed h\ tilie 101 )I) I. 'A II Cli determ i ties
is mo1rec coinplie11cted inI the ease oif tixx -phiase materials. tie prohabilit of' hindiiig a single crxstal inl tie polk-

'lIerli i liacose pi 'et iic Ire it roticlxtC INinILInenced cr~ stallii ti samnple w~kith at eerta in orientatIion "x ithi respeet
I1 ieI pr 'pert ic.. IfI lie shap. the x oL1riie fraction and the ito the samiple orientatiotis. as, shown in i n I.ur /\ceording
"I icittitioll ol eaIch paeto Iluiimi thle 0[)F)I can he w\rit teti as a series expansion

li , r~et ti\anulrao ic mthIod has1 beenI in1to s\1rnm1eirical generali/cd sphierical harmoni0cs1 as1
dxipel or I ie nondest 1rm.ieix decterintiIm11 Of ICtextre i,

III mICiii ma)trix coiitositc10[". \1CIeasunrcnicnIAs of'l Ilrotim rdtl IL ' ' q
ýJmit Ic.c hi1ictee usedf to determine111 the three fourth- '

'r1 lcv ( 1 )1 -epnso ocilkient iý 11 il'),0 1, 7064 and 006 1 11 xx hre 1,i the orientation . tie `-t",i' re sx mnietrical
,1 il~illI iiiii l)trix copstsIieinne oiiipoýites gcierli~/d spherlical harmonics aInd the C''' are the
ii C re11iril ree Wil [Iiim to ~ ýI ilicon cirbihde i Si( -expansion COe~ficinits. [hle uipper limlits Ilt h and Nt/i

.piic Ii :"iim II didertc thel msiptons ''lioniloeencums depend on I as .%cil as, the cr\ stal anid sample s\ ninietrx.

Lii' ilbib 'l dI Ihc '-I pril' ,nlltid ththe1,\ Al erx tallIn c rcespectixel.\. Flhe orthonormal funl~Ctioti S\steni 1''Is
inIr ie 's( pl ls r ut edt i ,nic stres the11CC IIr III ,Iimit to1o 1mds11 I all, rotations of the samnple ,sIimnietr\

~~iirm Lctlceli~ Ihyrii'reri h ccii dt~iciinl'd111~ I 1(icnictdki he rtic hdt diot Iiland theý_ cm stal sxniniietrx
I indliecmcd 1x theC let i%;oo it In tirsi 'Ippro\'ximnltonl

___________________0111 l___ u ixlt:e three: lourthi-order expalI1'isOn uciet ( '4t

.10 ~ ~ ~ ~ ~ ~ Pu 'Ii'I'-S iICr11fk I~0¶i IIs(rI1i, I',,- (ý k )Iindd I Cd [k)eed 1 e to 1be cdsdee fI tetr cxkl~
- -A- ',,i.iWrFROj III Liibic nii~itertM,m \xii hiotrhmisapesmcir

0041 624X 90 060370 05
(,1990 Butterworth-He'nemranin Ltd



Elastic anisotropy and texture in metal miatrix composites* M. Spies and K. Sa/ama

I [he Modified re itionship~s xx hichi alloxx the decterinina- xx here II is the angle to thle defoirinatton direction Irolling
lion of tile fou~rth-order expansion coefficientN C"~ for the or, etfuISionl coincidinu wiith the I -direction of the samrple
SIC paJrt ielc-reCilufored a I urn m urn malit rrx corn p-osi tes fixied coordino :rt sstemn It(eur I t. The quantities e,

- arc described in detail in reference 1. With c,= anld c, in equaltion I are constants determined fromt
21 . x here tI '' ( 2 anrd (44 are the elastic constanlts of .thle equaltion 1( 1).

,lnnr inle,,I crxstals. thle expansionl coeflicients (' Accordino to Biungc' ý. equation (8) can also he
are elatd to thle Lil rtraonlic xelocities I ao[ to %kxs expressed ats

210l 3 r2 I I;
I~-1 +~I s40 I(1.. 

2 '0x t - T(44 + + cCos 20 + L,('C, cos 1

I 2 x hre L' is thle Vo igtI axerage of Yolung's mlod UlIS fo r
2 11) S . randomn orientat ion dist ri but ion and t, i I and [" atre

4 7 11 -44 -1 2 ) combinations oft lie elastic constanlts of the s ingl c x tas
5 3 32 ~ I IL utionl 01 %%xill then prox de the expressions

CI 1 4[ L(iO t 2EK)45 ± L(90) E] I l~a)
7 6OPV -- \i 1 21 [ FI1 0- LOO9( I] = E lMb)

:1e 1l.c 4[ F() 211-02I5 +± LOO( I I 2AL I l0CeI
I2 I (~ 4) and fromt equation (9) \%e Canl obtainl

t (3

I / Experimental
The mnetal imatrix comnposites examnined in this ix estigit-

I i~ ~, i I . 17) tion are thle alumn-inium alloxys 8091 and 7064 containing

(s 1 the deuslitý x1and At is thle elastic mo simp to _21)"ol time fraction of silicon Ca rbide particles.

Ill tIN heeeqntI( Iriso \ desi na tes tilie ol ume11 fraction of percentagces of the SiC reinforcement are showN~n in
/it ,U, w. anid /, are thle [~anii coAat o l Iiblc 1. The composites wkere receixed ats extruded rods

and lc( * respctI\k \lx ,0 inl tilie calculation of' tilie of 25 mms inIn d iamlete cr. 1)r ismai tIi c s pee i iecns 15 t o 18 mm i
k~cetlilleýt [ilk:th dens'itr of' tilie comp-osite Canl be wide and 31) inin long wkere mlachined out of these rods
deterninediceordirt)t the lam of mixture ~ uhthat thle length direction is parallel to tile extrus~ion
I x I o \ direction. O pposite faces are miaclii ned. flat and parallel

I lie abhoxe ejilations are derixed uinder thle iullomm- to x\ ithin - 0)1)25 nirii on these ,pecirniens.
,i-tiIIit Io~ll I tie pre~sen~c of the SIC p~aftides changes Ilii or(Ier to determnine the 0M.1) expansion coelberients.

.'th (the elstc ropeCrties of thle comlposite a~nd the liltrasýorIte \elocit% n1Iil~itircleri aepr rne sn h
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1, accurateix determined bv an electronic Counter is
emnploxed to compute the ultrasonic xelocitv using the
relationship I' =s 4 where s is the path length of the
Ultrasonic wave. The system is capable of measuring 3--------------
changes in the ultrasonic Velocity' to an accuracy of better 3 00"O,01

than one part Iin 10. while the Inaccuracy of measuring p 2
both the longitudinal and the shear velocit ies is estimated p -
t o he 0.13,

Results and discussion 00

The eomtr\of he pecmen usd i ths ivesigaion Figure 1 Sample fixed coordinate system P and crystal fixed
.illoN% . h niticsuretnentts of all nine ultrasonic %kave system K for characterization of orientation

ecloc.itics I "Ithree different wkavesin three orthogonal
direct ions I. The eclocities measured are listed in Table 2.
In these measurements the 3-direction is taken to be

prallel to the extrusion direction of the sample (see AIii,'wc I I. [h le relationship betx\ecni teXtUre and NYoung's
modulus. described h\ equation (1I1I1. is valid for at cubic
crx stal structure containing teXtu~res vý ithi orthorhombic 6

svmmetr such s those generated by rolling. In this
arranteet~i the angle to the rolling direction. which 4

is taken to be parallel to the I-direction.
BecausI1C the extruded samples uinder examination also I

exhibit textujres, %% ith orthorhombic s\nmmetrý 5. equation
11 ) can be aipplied if the extruIsion direction is parallel 9

to the I -direction. Rearranging the sample-fixed coordinate 08e8(91
Nsxtcns InI this xý a% leads to at renaming of the composite-
ýcloci ties I l~~Ilab/t, 21) by changing the subscripts 2 0 5 O 15is 2 25

and suc tht I '. - . 3 1.Volume Percentage of SiC
[he ýelocities, x\hich Should be equal because of the 1

rotaimonal sxmincirv around thle extrusion axis are then Figure 2 Expansion coefficients C41 of the MMC specimens
averavcd to provide the velocities l 1 "'") V1-;mr. plotted versus volume percentage of SiC (1-direction parallel to

If~ I a,.' The 2 extrusion direction)
andi I I, ',`P. -Texpansion coetlicients C('

irc calculated uinet these ýelocities and equations ( 2) 14).
Their xalues are plotted vecrsu~s the volume percentage of fosr the angles O) 0 , 45 . 90 . F(( ) and Ff90 are
SIC in l-uurcs . and 4. Ini these calculations the computed Using the velocity data shown in Tablc 2. The
folkInx tg, Al-single crxstal constants are used"1 : c, Il 11.I shear %clocities at 45 to the extrusion direction have
G;Pit, t I- 52. 5 G(ita c,, = 32.5 G Pa for Al-8091 [ 8 ],~ also been mecasu red and their v alues are used to determine

I (17. 3 ( iIPa. =60.3 ( i Pa. I = 28,01 ('itP for FtO 45 . The values of E'10 I. F( 45 ) and F( 90 ) ats well
*\1-7()(4. The dest AlUCS used are"' 2524 kg m ' for ats those of Fm,. F\ and AE for the AI-8091 and AI-7064
.\l-XlV9) aitd 2864 k .e m 'for ,\l-7064. composites are included in Tlihlc 3. The plots of Em icrsxuts

'Ihle Youngzs Moduli Iin the 0) , 45 and 90) -directions C' I. E, i-erstis C.1,2 and AE i-ersus C"~ are also shown
aire decterni ned thing the relationship in F-igures.~ 5 to 7 and indicate linear Correlations as given

by equation ( IlIl. The regression equations for these
tllOH p1;j) 3t)1) + 210f)) 1121 relationships can then be written ats

101f 4- Jill;) Al-809I
Shere t t, Vanitc constaints 11)01 intd Jif 01, are determined I I, - (2. 238 ( + 7 8.171 (G Pa r01.992

1.1 = (0.451 C12 0.0MG (Pit I-= 1

/10 +lh , l 2110f1 - pit 1 13) M. = (0. 143 C4' 0. 115) (Pit r =0.995

Table 2 Ul,It,isonic v,ýIocits,es of tho Al 8091 and Al 7064 MMC-specimens Velocities are shown in units of m s1

8091 8091 8091 7064 7064 7064 6061 6061
0 10' . 15111 0'% - 15% - 20% -15%/ 20%/

sic SC sic sic SIC sic sic sic

Pi 61 2 6922 7050 r238 6731 6911 6817 7165
6606 6913 7011 623? 6734 6937 6780 7103

Vý 6564 7043 7168 6194 6920 7108 6869 7207
1/1 31841 3 708 3816 3059 3435 3584 3413 3695

V3477 3702 3805 3066 344L0 3567 3418 3701
L.341567 3728 3834 3082 3479 3641 3438 3731

3480 3736 3842 3057 3469 3636 3442 3733
V1 1 3472 3 733 '3848 3051 3470 3617 3446 3740

V, 3482 3736 3844 3062 3469 3640 3435 3774
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Figure 3 Expansion coefficient C12 of the M MC specimens plotted Figure 5 Elastic parameter E~, plotted versus the expansion
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Figure 4 Expansion coetficients C,' of the MMC specimens Figure 6 Elastic anisotropy par.-meter E. plotted versus the
piotted versujs volunme percentage of SiC (1 -direction parallel to expansion coefficient C" for the Al-8091 and AI-7064 MMC

xiCLS~i!i r~re:tro ) pecimens

-(10i~f4 examined. It is important to note that in these relationships
1, 1. 01 95, J s )' iI 1' 0.998 C," are the texture coefficients determined for the Al-

matrix, whereas E., E, and AE characterize the elastic
() -7(~ Ill (P r )9 antsotropv of the whole composite. From this it can be

\F MI 016 1,, 0ll~lll(ia~ .943 concluded that the elastic anisotropx of the composites
is influenced onlk b\ thle textuire of the Al mnatrix, which

I he fact that tilie reeression I tite,, for F \ and( Al;1 do not is in tu -n intluelnCed b\ tile extrusion process and the
1 "the OT'itnille 1 (ti o e~riein is due toi measurinia errors. presence of the SiC particles,. Also from the linear

\e'.crth1chles. lie mhi eli crrel it ion celicien Is confIirtm the correlation of, I- \~ kit IC '2. slioý\ n inl Fi'kr.ur 6. it is seen.
Ofi Oi\lIC lie rla i oships hetc: s l cutextre and NYouItWg t hat 1- . xhich represent,, thle ditlierecelc of thle Young's

M0ui11110ns I eqIual01 ion I I )) for the Al SiC composites titoduIlus in thle extrusion direction and the Young~s

Table 3 Y- . 111) 'itdI l, F, 0 ) fi 45 1 and E I 90 Iand i1th 'esultm(A parameters E_ F. anil \F for the Al 8091 and Al 7064 M MC
I i. T hij, v,. -howr *n -1 j,tr (if o G Pa

8091 Snq 1 8091 7064 7064 7064
-0.101 I 15.11 0 11 15% .20%

S'C SýC sic sic sic sic

/ , ()8 91 1 959 72 1 91 1 991
""f ) 9o 00 94 3 719q 900 97 2

.S9i)iu 900( 9427 720n 896 965
ý( )90 3 9)48 72 0 902 97 5

1 t. o1( f'5 o (in 0 05 0 75 1 30
W5 I10n 0 15 035 060
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ELASTIC A141SOTROPY IN PARTICLE/FIBER REIINFORCED

ALUMIIIUM HETAL I14•TRIX COMPOSITES

B.Grelsson and K.Salama
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Houston, TX 71204

INTfRODUCTION

Metal matrix composites hold high promises as engineering

materials. In order to take full advantage of their promising
properties, the complex nature of the composites must be understood.

Some questions thus arising; how do different manufacturing processes

Influence the microstructure and how can the mechanical properties of

the composites be explained and predicted from knowledge of their

microstructure.

The elastic properties of a composite material depend on many

parameters: volume fraction, geometrical shape, size distribution,

orientation and distribution of the reinforcement and the properties of

the matrix. Mathematical models have been developed for some specific

shapes and distributions of the reinforcement. Christensen I13 derived

the effectt.ve shear and bulk moduli for a dilute suspension of elastic

spherical particles In a continuous phase of another elastic material.
Ledbetter et al. (21 used a scattering theory to explain the elastic
behavior of a particle reinforced composite in which randomly oriented
ellipsoidal particles were nonhomogeneously distributed. Experimental
work by Lee et al. (31 showed that In particle-reinforced composites the
second-order elastic constants increase linearly with the particle
content. Their results suggested that the dominant factor In influencing
the anisotropy is the content of reinforcement. Spies A Salama (41
investigated the Influence of the reinforcing phase on the texture and
found that the fourth-order expansion coefficients change linearly with
the particle content. Their results indicate that the presence of
particles In the composites leads to considerable changes in the texture
of the aluminum matrix.

The objective of this study is to obtain Information apout what
features In the microstructure of the composites are causing their
anilsotropic behavior. This was accomplished by comparing the particle
size distribution in three orthogonal directions, with the ultrasonic
velocities measured along the same directions. Three series of SIC-
particle reinforced composites were examined. Two series comprised of
extruded samples while the third consisted of pressed specimens. Each
series Included samples of different particle content. Also, three
squeeze-cast samples with different particle/fiber content were

r,.i..w of Proprref Ini Qnaenrittore Nondeusln,,rrh Evohldgion. Vol. 9 144 1
Edhitd by 0.0. "hiompson and D.E. Chilmend
Plel.um Press, He* York. 1990



examined. In the extruded composites, the properties along the extrusion
direction were found to be different from those in the directions
perpendicular to the extrusion direction. This behavior is explained in
terms of the presence of texture in the matrix. The squeeze-cast
specimens also showed an anisotropic behavior which is induced by
preferred orientation of the fiber reinforcement.

MEASUREMENTS

Scerimenn

The metal matrix composites (MMC) used in this investigation
comprised of aluminum alloys as the matrix material and either SiC-
particles or alumina fibers and particles as the reinforcement. The
specimens which have AI-6061 as matrix were received as pressed plates,
whereas the composites containing Al-7064 and Al-8091 were obtained as
extruded rods. The alumina reinforced specimens were all squeeze-cast.
The volume fractions of reinforcement in the composites used are shown
in table 1.

The coordinate systems were chosen such that in pressed samples the
x, and x 2 -axes are in the plate at right angles to each other and the
x 3-axis is alon- the compression direction (normal to the plate). In the
extruded gne Lmens the x, and x 2 -axes are perpendicular to the extrusion
directi .... . orthogonal to each other. The x 3-axis is along the
extru 4-, direction. In the squeeze-cast samples the x, and x 2 -

dirýc. .. ns are in the fiber rich layers at right angles to each other,
aric the x3-direction is perpendicular to the fiber rich layers.

Microgtnrurture-

The particle size distribution and the area fraction covered by the
reinforcement in each plane were estimated in each specimen. This was
accomplished by scanning the faces of the specimen under an optical
microscope and taking photographs at several "representative" locations
along the three chosen directions. The particle size distributions were
obtained from these micrographs by counting the particles and estimating
their size. The size of a particle was estimated using its projected
area on the face which, in turn, is equal to the area of a circle having
the diameter d. The particle was considered to belong to the size range

Table 1. Metal-Matrix Composites used in investigations

Manufacturing method % Reinforcement in Composites

Pressed plates AI-6061 + 0% SiC
AI-6061 + 25% SiC
AI-6061 + 40% SiC

Extruded rods AI-7064 + 0% SiC
Al-7064 + 15% SiC
AI-7064 + 20% SiC

Ai-8091 + 0% SiC
AI-8091 + 10% SiC
AI-8091 + 15% SiC

Squeeze-cast Al-Si-Cu-Ni-Mg + 20% A12 0 3  (Mat A)
Al-Si + 20% A1 2 0 3  (Mat B)

Hdttenaluminum + 20% A1 2 0 3  (Mat C)
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where the inequalities n < d < nil are satisfied, where n and n+1 are
the lower and upper limits of the size range. Atso from the micrographs,
features like orientation, shape and distribution of the reinforcement
were examined.

Ullt~rasonic veloc-ities

Measurements of the ultrasonic velocities were performed using the
pulse-echo-overlap method, which is described in detail elsewhere (5). A
pulse of approximately 1-gsec duration of variable pulse-repetition rate
is generated and impressed on a transducer which is acoustically bound
to the specimen. The reflected echoes are received by the same
transducer, amplified, and displayed on an oscilloscope. Two of the
displayed echoes are then chosen and exactly overlapped by critically
adjusting the frequency of the cw oscillator. This frequency f is
employed to compute the ultrasonic velocity using the relation V-21f,
where I is the thickness of the specimen. X- and Y-cut transducers of 10
and 2.25 MHz were used for the generation of the longitudinal and
transverse waves respectively.

RESULTS AND DISCUSSION

The particle size distribution and the fiber/particle content,
estimated from optical micrographs, are shown in figures 1-4. Table 2
and 3 contain the area fractions covered by the reinforcement. The data
are accurate to within 10% of the nominal values. Table 4,5 and 6 give
the ultrasonic longitudinal and shear velocities measured. The
velocities are denoted Vil, where i and j are the directions of
propagation and polarization respectively. The velocities are found to
be reproducible to within 0.5%.

From figures 1-3 one finds that in the pressed samples, the
particle size distributions as well as the area fractions covered by the
reinforcement are the same in the three directions within the accuracy
of the measurement. On the micrographs the reinforcement showed no
features explaining the differencies in ultrasonic velocities measured.
This suggests that the anisotropy is due to the te ture in the aluminum
matrix. The similar anisotropic behavior in the specimen without

reinforcement also confirms this statement. However, the presence of
SiC-particles is found to vastly enhance the anisotropy.

Table 2. Area fractions covered by the SiC-particle reinforcement.

Direction 6061+ 6061+ 7064+ 7064+ 8091+ 8091+
25% SiC 40% Sic 15% SiC 20% SiC 10% SIC 15% Sic

1 26.3 37.7 20.6 23.9 12.7 17.5
2 22.6 36.3 18.7 23.7 12.1 16.5
3 24.0 31.7 16.5 21.0 11.8 15.3

Table 3. Area fractions covered by the alumina fiber and particle
reinforcement (%.

Direction Material A Material B Material C
PartfnleFlher Total ParticleFiber Total ParticleFiber Total

1 12.0 11.9 23.9 8.5 12.6 21.1 1.0 13.2 14.2
2 20.4 2.5 22.9 15.2 2.7 17.9 12.5 3.2 15.7
3 18.7 2.9 21.6 15.7 2.0 17.7 13.7 2.7 16.4
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Table 4. Ultrasonic velocities in SIC particle-Al pressed
composites Im/s)

Velocity 6061+ 6061+ 6061+
0% sic 25% Sic 40% SiC

V11  6407 7224 89058
V2 2  6422 7287 8064

V33 6358 6979 7641
V12  3098 3785 4507
V1 3

V21 3103 3798 4505
V2 3  ....

V31 3200 3676 4398
V]2 3195 3692 4412

Table 5. Ultrasonic velocities in SIC-particle-Al extruded
composites (m/s)

Velocity 7064+ 7064+ 7064+ 8091+ 8091+ 8091+
0% SiC 15% Sic 20% SIC 0% SIc 10% SiC 15% SiC

vil 6251 6728 6935 6617 6890 7002
V 2 2  6233 6733 6875 6611 6903 7000
V33 6250 6902 7071 6626 7025 7141
V1 2  3077 3457 3591 3511 3723 3827
V1 3  3069 3485 3667 3498 3738 3848
V2 1  3075 3448 3593 3507 3719 3818
V23 3095 3417 3625 3496 3731 3834
V3 1  3056 3490 3666 3492 3745 3856
V32  3090 3469 3595 3494 3741 3852

Table 6. Ultrasonic velocities in alumina particle and fiber-Al
squeeze-cast composites Im/s)

Velocity Composite A Composite B Composite C

V11  7032 6967 6670
V2 2  7033 6969 6712
V33 6904 6835 6524
V 12  3694 3656 3419

V1 3  3669 3578 3336
V2 1  3681 3657 3439
V2 3  3683 3594 3345
V31  3644 3560 3325
V3 2  3675 3606 3329

In the two series containing extruded specimens (AI-7064 and Al-
8091) the reinforcement showed the same features in the three directions
(compare figures 2 and 3). Nevertheless, in the reinforced samples the
longitudinal velocities are higher in the extrusion direction, whereas
the velocities are the same In the samples without reinforcement. This
behavior further indicates that the anisotropy is caused by texture in
the aluminum matrix but also indicates that the presence of the SiC-
particles enhance the formation of texture.

In the squeeze-cast specimens (composites A,B,C) the ultrasonic
longitudinal velocities, given in table 6, are considerably higher in
the plane of the fibers than in the directions perpendicular to that
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plane and the higher the fiber content the higher the difference in
velocity. No difference in longitudinal velocity was, however, found for
waves propagating in the plane of the fibers having different
polarization directions. Furthermore, the velocities of the shear waves
propagating normal to the plane of the fibers but polarized in different

directions are the same whereas thie velocities of the shear waves
propagating in the plane of the fibers are higher when the waves are
polarized in the plane than when the waves are polarized normal to the
plane. This means that the squeeze-cast specimens show a transversely
isotropic behavior !,ich is in agreement with their microstructure.
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Elastic Constants of Particle and Fiber Reinforced
Metal Matrix Composites

B. Grelsson and K. Salama

Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA

Abstract. A model has been developed to predict the elastic moduli in composites
reinforced with both particles and fibers. In the model the matrix material and the
particles, which are assumed to be homogeneously distributed, form an effective ma-
trix. The characteristics of this effective matrix is calculated using a theory formulated
by Ledbetter and Datta. The effective matrix is then considered to be reinforced with
fibers lying in one plane but randomly oriented in that plane. The effect of the 2-
dimensionally random orientation of the fibers on the elastic moduli of the composites is
determined in two steps. First the composite cylinders model by Hashin and Rosen for
an aligned fiber system is employed, and then a geometric averaging procedure sug-
gested by Christensen and Waals is performed. Using this model, the Young's and shear
moduli were calculated for three samples with different aluminum matrices and volume
fractions of particles (9, 13, and 17%) but the same fibercontent (6%). The same elastic
moduli were also determined using ultrasonic velocity measurements. The agreement
between calculated and measured elastic moduli is found to be very good. Also, the
elastic anisotropies between directions of the fiber rich plane and that normal to the
plane could be predicted by the model.

Introduction

Many models have been developed to determine the effective elastic moduli of
composite materials [1-7]. Most of these models deal with reinforcements in
the form of spherical particles [1, 21, ellipsoidal inclusions [3, 4] or infinitely
long fibers [5, 61. However, in industrial applications the composites used are
often of a more complex nature, where a mixture of particles and fibers is
used as a second phase. To our knowledge no models that describe the elastic
properties of these composites are available.

Ledbetter and Datta [11 used a multiple scattering theory to predict the
elastic behavior of composites with a nonhomogeneous particle distribution. In
the model they assume that the particles together with the matrix form an
enriched "sea" that surrounds "islands" of pure matrix material. These non-
spherical islands are aligned and produce anisotropy. The elastic constants
predicted by the model are found to agree with those determined by ultrasonic

This article is dedicated to Professor Dr. Paul H1ller on the occasion of his 65th birthday.



84 Grelsson and Salama

velocity measurements. Also, the elastic anisotropies in these composites
could be explained in terms of the nonhomogeneous distribution of the
particles.

On the other hand, in order to determine the effective elastic properties of
fiber reinforced materials, Hashin and Rosen [5] introduced the composite
cylinders model. In this model, the composite is considered to be comprised of
infinitely long circular cylinders embedded in a continuous matrix phase. Each
fiber has a radius, a, which is surrounded by an annulus of matrix material of
radius b, and the ratio alo is considered to be constant for all composite
cylinders. In order to obtain a volume filling configuration, the absolute size of
the cylinders must vary considerably. Hence, the model is expected to provide
reasonable agreement with experimental measurements only if the size distri-
bution is wide or the fiber concentration is low.

The present study is concerned with composites reinforced with both parti-
cles and fibers. In these composites, the presence of the homogeneously dis-
tributed particles improve the overall mechanical and thermal properties,
whereas the fibers, randomly oriented in one plane, introduce the directionality
often desirable in some applications. Due to the mixing of particles and fibers a
model determining the elastic moduli of the composites is expected to be ex-
tremely extensive and complicated. In the composites investigated, however,
the volume fraction of the reinforcement is relatively low, and hence we as-
sumed no interaction between the fibers and the particles. This assumption
simplified the calculations significantly since the effects of fibers and particles
on the elastic properties could be evaluated independently.

In this approach we first considered the matrtx material and the particles to
form an effective matrix. Since the particles are homogeneously distributed in
the metal, the effective matrix is considered to be homogeneous. The effective
matrix was then considered to be reinforced with the fibers which are randomly
oriented in one plane. The influence of the fibers on the elastic moduli of the
composites was then determined first by using the composite cylinders model
for an aligned fiber system [51 and second by performing a geometric average
procedure which takes care of the 2-dimensionally random orientation of the
fibers. A good agreement was obtained between the calculations and the experi-
ment.

Theory

Composite with Spherical Particles

First. we consider a system that consists of an aluminum matrix and alumina
particles. To find the elastic properties of this system, the results obtained by
Ledbetter and Datta [1] are adopted. Using a multiple scattering approach
these authors calculated the effective wave speeds of plane waves in a compos-
ite with randomly distributed particles. In their calculations they made the
assumptions that the wavelength of the ultrasonic waves is long compared to
the dimensions of the particles, all particles have the same shape and size, and
the concentration of particles in the composite is dilute. The expressions for the
effective bulk. Kf, and shear moduli, Geff, they obtained are
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K C, T,
K - K, 3 (1)

K m-K Cp (Kp-K ) Ti
3K, + 4G,,, .T

!CpG,( T.,!T..)
5f - G',:3 (2)

G, -G, 6p G .~)(K + 2Gm) Ti I Tig
25 3K,, + 4G, 3',,

where the subscripts m and p refer to matrix and particles respectively, and
C, is the volume fraction of particles. The expressions for Ti1• and Tiji are given
in [1I.

The system consisting of the aluminum matrix and the alumina particles is
now considered as the effective matrix. In order to obtain the elastic properties
of the composites under consideration, the characteristics of a composite com-
prised of the effective matrix and fibers randomly oriented in a plane are
needed. The first step in finding these characteristics is to calculate the proper-
ties of a composite with fibers aligned in one direction.

Composite with Aligned Fibers

The most common model used for this geometry is the composite cylinders
model introduced by Hashin and Rosen [5]. In this model, the fibers are as-
sumed to be infinitely long circular cylinders embedded in a continuous matrix
phase. With every fiber of radius, a, there is an.annulus of matrix material of
radius, b, associated with it. The ratio of these radii a/b is considered to be
constant for all composite cylinders but the absolute values of the radii a and b
vary such that a volume filling configuration is obtained. The effective Young's
modulus El1 , the Poisson's ratio V'2. the plane strain bulk modulus K23 and the
shear moduli G1 , and G, 3 of the composite can then be expressed as

Ell = CfEf + (I - Cf)E,,, + 4C .(l - Cf)G , [(1 -C) G,,, J.
Kf + G,,3 ' K,, + G,,I3

f(I - C,)(V +- tm) CKG,,, G+
I~ K,/ + ý ,,3 K +1GlV 1 = C O~ + ( I - f ) V , +( I - C f ) G ,, + C f G ,, + I

Kf + Gf13 Km + G,,m3

K23 = K.. + G_+ ! -C

Kf - Km + (Gf - G,)13 K K,, 4Gm/3
G12 = G((I + Cf) + G,(I - Cf)

G Gf, ( - Cf) + GO(l + Cf)

G23  I Cf
Gm= G, + (K, + 7G,/3)(I - Cf)

Gf- Gm 2(K,,, + 4Gm/3)
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where the subscripts m and f refer to matrix and fibers respectively, and Cf is
the volume fraction of fibers. From these relationships the five independent
components of the second order elastic constant tensor can be calculated using
the relationships [7]

C11 = Eil + 4 VY1 K23

C12 K2
C12 = 2K23+12

C22 = G23 + K23

C23 = -(123 + K23

C66 = G12 (4)

The above expressions give relationships for the elastic properties of a
composite reinforced with spherical particles and aligned fibers. The character-
istics of a composite where the fibers are randomly oriented in a plane are then
to be determined.

Composite with 2-D Randomly Oriented Fibers

A schematic representation of the problem is shown in Fig. 1. The figure shows
that all the fibers are lying in the xIx 2-plane but randomly oriented in that plane.
To determine the elastic properties of this configuration, the approach of Chris-
tensen and Waals [7] is used. In this approach, the effect of a random orienta-
tion of fibers on the stress to strain ratios o1'I /s analytically equivalent to
finding the average value of the ratio o'1i7e when all possible orientations are
taken relative to a fixed axis as shown in Fig. 2. In the 2-dimensional case this
can be expressed as

I= ! dO, (5)

where the stress to strain ratio in the integrand refers to the aligned fiber system
shown in Fig. 2 and 0 is the angle between the xj- and the xl-axis. The stress to
strain ratios are then calculated using the tensor transformation laws for
stresses and strains

"cos2 O sin2O 0 0 0 -sin20

sin 2o cos 20 0 0 0 sin2o
- 0 0 1 0 0 0 0

0 0 0 cosO sinO 0

0 0 0 -sine cosO 0

I sin20 sin2O 0 0 0 cos20 .o(6)
.o' 2 2 (6)
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3'

Fig. 1. Composite with fibers
randomly oriented in the
x1x2-plane.

3 3

2

SFig. 2. Composite with fibers
Saligned along the xj-direction.

The xr- and xz-axes are ro-
tated an angle 6 with respect

f l to the x;- and xt-axes.

cos-2 O sin2 O 0 0 . ...
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20 s 0 0 sin20 i

2E2 sin-'O cos'-O 0 0 0 i20 c

63 63

0 0 1 0 0 0
E4 64

0 0 0 cosO -sinO 0 6;

0 0 0 sin0 sino 0 66

-sin20 sin20 0 0 0 cos20 (7)

and the stress-strain relationships for a system with aligned fibers which are

given by

(.1 = CIIEI + C122 + C12V3

0.2 = C12EI + Cr2E2 + C23E3

(73 = C 12- 1 + C 23E2 + C 22E3
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0"4 = I/2(C,, -,3)E4

0"5 = C66E 5

0"b = C6666 (8)

The stress to strain ratio a-; can then be evaluated by imposing a strain along
the 1'-direction such that the conditions

Ei #€ 0

=0 i : 1 (9)

are satisfied. The transformation laws, Eqs. (6) and (7), and the stress-strain
relationships, Eq. (8), then yield

0 = 0-1 cos 20 + o.2 sinU0 - oT6 sin20

C1 1 cos-O + C12 sinzo

- C12 C, cos 2 0 + C,2 sin20

o6 -C66 sin2O (10)

Combining Eqs. (10) results in

"= C11 cos40 + 2C12 sin2- cos-0 + C,. sin 40 ± 4C6 sin2 O cos0 ({11)

Integration according to Eq. (5) gives

•=•, =- (3C11 , 2C, 2 + 3C22 + 4C,) (12)

The stress to strain ratio evaluated in Eq. (12) will correspond to one of the
components, QIi. in the second order elastic constant tensor for the composite
in Fig. 1. The other components in this tensor can be evaluated similarly and are
found to be

Q1- ),r,,,,m = (C11 + 6C1, + C- - 4C(,)

Q,= (C=,2 + C2 1)
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Q33 ""' rno = C-',

(..) (C12 - C, 3 + 2C6) (13)

For the composite with 2-D randomly oriented fibers, these five components
fully describe the stress-strain relationships which are given by

-1= QIIEI + Q1EQ1E

(1= Q12E Ql1 Q3E

vT*1 = Q1E QnIF2 Q33

(T4 = Q4

(75 = Q44ES

0,6 = -/2(Ql - Q fr.) (14)

From the five components of the second order elastic constant tensor, the
effective Young's and shear moduli of the composite can be calculated using
the relationships

Q1 O (Q,2 - Qll) + Q1: (Qi'1 Q33Q,2)EI : QQ,, IQQ,,Ql - Q21,

2Q•
Q= e Q - Q,

G1 = -(Q,, - Q12)

G,3 = Q44 (15)

Measurements

Specimens

The metal matrix composites used in this investigation are comprised of an
aluminum alloy as the mZ,:.;'v-.-' ' and alumina particles and fibers as the
reinforcements. The three aluminum alloys used as matrix materials consist of
AI-12% Si. AI-12% Si-Cu-Ni-Mg, and commercially pure aluminum.

The composites were manufactured using the squeeze casting method and
produced in the form of bars. From these bars, blocks measuring 10 x 12 x 20
mm were cut. The blocks were machined and ground such that opposite faces
were flat and parallel to within 10 Am.

The coordinate systems for the specimens were chosen such that the x,-
and x2- directions are in the fiber rich layers at right angles to each other and the
x.-direction is perpendicular to the fiber rich layers. The volume fractions of
particles and fibers in these samples were estimated using optical microscopy.
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Ultrasonic velocities

Measurements of ultrasonic velocities were performed using the pulse-echo-
overlap method, which is described in detail elsewhere [8]. A pulse of approxi-
mately l-/.tsec duration of variable pulse-repetition rate is generated and im-
pressed on a transducer that is acoustically bound to the specimen. The
reflected echoes are received by the same transducer, amplified, and displayed
on an oscilloscope. Two of the displayed echoes are then chosen and exactly
overlapped by critically adjusting the frequency of the cw oscillator. This fre-
quencyf is employed to compute the ultrasonic velocity using the relation V =
21f, where I is the thickness of the specimen. X- and Y-cut transducers of 10 and
2.25 MHz were used for the generation of the longitudinal and transverse
waves respectively. The elastic constant- were calculated using the relation-
ship

C C, = pV p = 1,2..... 6, i,j = 1,2,3 (16)

where p is the mass density, and indices ij are contracted to index p according
to Voigt's notation.

Microstructure

The microstructure of one of the composites used in this study is shown in Fig.
3. The micrographs show the microstructure in the three directions for the
composite with huttenaluminum as the matrix metal. The dark, almost circular
areas are the particles, whereas the fibers appear a's light grey rods, 20-50 Jtm
in length. The micrographs clearly illustrate that the fibers are lying in one
plane, with its normal in the 3-direction, but they are randomly oriented in that
plane. Furthermore, the I- and 2-directions exhibit the same features. They both
show a low fraction of fibers oriented in the xIx 2-plane and have the same
particle content. These observations confirm that a transversely isotropic be-
havior of the composites is to be expected.

The area fractions covered by the fiber and particle reinforcements in each
plane were estimated in the three specimens. This was accomplished by scan-
ning the faces of the specimen under an optical microscope and taking photo-
graphs at several "representative" locations along the three chosen directions.
The area fractions were obtained from these micrographs by adding the pro-
jected area on the face of all particles and fibers and dividing by the total area.

Results

Table I contains the area fractions of the fiber and particle reinforcements in
the composites used in this investigation as estimated from the optical micros-
copy study. Table 2 includes values of the elastic constant found in literature
[9] for the aluminum alloys used as matrices for the composites. It also includes
the measured mass densities of the composites and the volume fractions of the
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Fig. 3. Microstructure in three orthogonal
directions of the composite with Hutten-
aluminum as the matrix metal: a direction I:
b direction 2: c direction 3. The dark almost
circular areas are alumina particles whereas
the light grey rods of 20-50 m in length are
alumina fibers. Bar = 20 Am.

alumina reinforcements. The volume fractions of particles and fibers were ob-
tained by taking the average of the area fractions in the three directions.

Table 3 lists the ultrasonic velocities, V,, measured, where i and j denote
the directions of propagation and polarization respectively. In Table 4 the
calculated and measured elastic constants are listed. Column 2 gives the elastic
constants of the effective matrix, consisting of the aluminum matrix and the
alumina particles. These constants were calculated using Eqs. (1) and (2).
Using Eq. (3) the elastic constants of composites with aligned fibers were

Table 1. Area percentage of alumina particle and fiber reinforcements in MMC
specimens

Matrix
Al-Si-Cu-Ni-Mg Al-Si Huittenaluminum

Direction Particles Fibers Particles Fibers Particles Fibers

I 18.7 2.9 15.7 2.0 13.7 2.7
2 20.4 2.5 15.2 2.7 12.5 3.2
3 12.0 11.9 8.5 12.6 1.0 13.2
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Table 2. Elastic constants, densities, and volume fractions of MMC
specimens used in calculations

Material E (GPa) v p (kgim3 ) C' C(

Al-Si-Cu-Ni-Mg 73.1 0.33 2825 0.17 0.06
Al-Si 71.0 0.33 2760 0.13 0.06
Hlttenaluminum 68.9 0.33 2793 0.09 0.06
Alumina 372.0 0.224

Table 3. Ultrasonic velocities measured in MMC specimens

Matrix

Velocity (m s) Al-Si-Cu-Ni-Mg AI-Si Huittenaluminum

Vu 7032 6967 6670
VI. 7033 6969 6712
V, 6907 6835 6524
V2' 3694 3656 3419

VrI 3669 3578 3336
V.I 3681 3657 3439
V., 3683 3594 3345
VII 3644 3560 3325
V 3675 3606 3329

Table 4. Calculated and measured elastic constants Qf-MMC specimens with AI-Si-
Cu-Ni-Mg. Al-Si. and Huttenaluminum as the matrix metal

Elastic Effective Aligned Random

Matrix constant matrix fibers fibers Measured

AI-Si-Cu-Ni-Mg Ell 92.2 109.1 102.2 100.4
E,, 92.2 99.5 102.2 100.4
El 92.2 99.5 99.6 98.7

G, 34.8 37.5 38.8 38.4
Gi, 34.8 37.5 37.4 37.8
G,, 34.8 37.2 37.4 38.2

Al-Si El 85.0 102.3 94.9 95.0
E,, 85.0 92.0 94.9 95.4

E85.0 92.0 92.1 92.9

('2 32.0 34.6 35.9 36.9
Grl 32.0 34.6 34.4 35.1
G,, 32.0 34.2 34.4 35.8

Huttenaluminum E78. 95.8 88.0 84.6

E,, 78.1 84.9 88.0 85.4
E, 78.1 84.9 85.0 81.9
G,. 29.6 32.0 33.5 32.8

G, 29.6 32.0 31.9 31.0

G" 29.6 31.7 31.9 31.0
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computed and the results are listed in column 3. Column 4 lists the predicted
elastic constants when the fibers are randomly oriented in one plane. These
results were obtained by employing Eqs. (4). (12). (13), and (15). These values
are to be compared with the measured values given in column 5. The measured
data were computed using the densities given in Table 2 and the ultrasonic
velocities listed in Table 3 and are found to be reproducible to within 1%.

Figure 4 displays the calculated effects of changing the fiber content on the
anisotropies in the Young's and the shear moduli of the composites. In these
calculations the effective matrix consists of the Al-Si alloy as the matrix metal
and 6% alumina particles. Figure 5 illustrates the calculated effect on the same
moduli upon chaaging the particle content in the effective matrix. In these
calculations the Al--'i alloy was also used as the matrix metal and the fiber
content was 6%.

Discussion

From the metallurgical observations it is seen that the area fraction of fibers in
the 3-direction is vastly higher than those measured in the two directions in the
plane perpendicular to the 3-direction. In the I- and 2-directions the fiber con-
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tent is the same to within ± 0.4%. Also the micrographs show that the particle
content in the 3-direction is significantly lower than those in the other two
directions. However, the projected area of the particles is almost circular in all
three directions indicating spherical particles. Due to this result and the fact
that the manufacturing process should not produce any anisotropy due to the

distribution of particles, it is assumed in the ca!culations that the particles are
spherical and that they are randomly distributed.

The experimental results in Table 3 show that the composites exhibit a
transversely isotropic behavior which is in agreement with the microstructure
shown in Fig. i. This behavior requires that El = E-2 and G13 = G23 which is in

agreement with observations shown in Table 4. to within 2%. Furthermore. the
elastic constants in the 3-direction differ from those in the I- and 2-directions

such that E, < Ell and G1, < G12. This also agrees with the microstructure
observed in the three samples since the fiber rich plane is expected to be

elastically stiffer than the planes normal to that plane.
The general behavior of the predicted elastic moduli as a function of the

fiber or particle content is shown in Figs. 4 and 5 respectively. It can be seen
from these figures that the four elastic moduli increase almost linearly with the

fiber content and as a consequence the anisotropy exhibit the same behavior.
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As the particle content is increased the elastic moduli deviates slightly from a
linear relationship. Furthermore, E33 and G13 increase at a faster rate than Ell
and G12 such that the anisotrophy produced by the fibers is slightly lowered as
the particle content is increased.

Since the fiber content in the three samples was the same, the anisotropy
was expected to be more prono..nced in the composite with the soft matrix than
that with a stiffer matrix. As can be seen in Table 4, this behavior was experi-
mentally observed in both the Young's and the shear moduli. As the stiffness of
the effective matrix is increased, the difference in the moduli between the
directions in the plane and normal to the plane of the fibers becomes less
pronounced. The quantitative values of the anisotropies are also well predicted
by the model. For the material with the lowest particle content (9%), the values
agree almost exactly. As the particle content gets higher, the observed aniso-
tropies deviate from those predicted but the agreement is still good. This trend
is expected since the model assumes no interaction between the particles and
the fibers, and accordingly the model will be more applicable to composites
with low particle content.

The deviation from predicted anisotropies can also be explained from a
microstructural point of view. When the particle content is increased it be-
comes more difficult to orient all the fibers in a specific plane. In addition, it
seems that the presence of particles will force some of the fibers to be oriented
such that they make a small angle with their ideal orientation, and the true
configuration will differ from that assumed by the model. The anisotropy pro-
duced will then be lower than that predicted.

Summary

The elastic behavior of metal-matrix composites reinforced with homogene-
ously distributed particles and fibers randomly oriented in two dimensions, has
been investigated. Using a model which assumes no interaction between parti-
cles and fibers, the elastic moduli as well as the elastic anisotropies were
calculated for the composites containing 9, 13, and 17% particles and 6% fibers.
The values computed by the model are found to agree very well with those
determined from ultrasonic velocity measurements.

These results indicate that for relatively low volume fractions of reinforce-
ment the interaction between particles and fibers can be neglected on determin-
ing the effective elastic properties of these composites. This simplifies the
calculations significantly when these composites are to be used in applications
since the effects of adding particles that improve the overall properties, and
fibers that generate the directionality, can be estimated independently. This is
applicable for volume fractions that are not too high.

Acknowledgment. This work is sponsored by the Army Research Office under contract No.
DAAL03-88-K-0096.
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ACOUSTIC NONLINEARITY IN METAL - MATRIX COMPOSITES

H. Mohrbacher, D. Lee, E. Schneider * and K. Salama

Department of Mechanical Engineering
University of Houston
Houston, TX 77204, (713) 749-4455
* Fraunhofer Institute for Nondestructive Testing, Germany

INTRODUCTION

The elastic behavior of a solid consists of linear and nonlinear contributions. The
linear part is represented by the well known Hooke's law which is given in tensorial
notation as

0i. = Cik Ekl (1)

where aij and Ekl are the stress and strain tensors, respectively, and Cijkl is the tensor of
the second order elastic constants (SOEC). This relationship is sufficient for many
engineering calculations since deviations from a purely linear elastic behavior are small.
Hooke's law, however, is not sufficient for an advanced characterization of the elastic
behavior of materials. This is due to the fact that many of the physical and mechanical
properties of materials are of nonlinear nature. The nonlinear elastic behavior can be
investigated using ultrasonic techniques because of their high sensitivity for small nonlinear
effects. Among the nonlinear effects are the stress and the temperature dependences of
ultrasonic velocities in the solid. These effects have gained considerable interest in the last
decade, particularly for the nondestructive evaluation of applied and residual stresses [ 11 ,
and also for the microstructural characterization of materials [2]. Another physical
manifestation of the nonlinear elastic behavior of solids is the acoustic nonlinearity
parameter. This parameter can be determined from measurements of the amplitudes of
fundamental and second harmonic when an originally sinusoidal wave gets distorted while
propagating through the solid. The nonlinearity parameter can also be calculated from a
combination of second and third order elastic constants. In previous studies [31, the
nonlinearity parameter was found to be sensitive to microstructural changes in aluminum
alloys and in particular to the content of precipitates of the second phase.

Metal - matrix composites are a new class of materials wich contain a metallic
matrix and a metallic or ceramic material as a reinforcement. The bulk properties of these
composites can be tailored by changing the volume percentage, geometry, distribution, and
orientation of the reinforcement. Due to the different coefficients of thermal expansion for
the matrix and the reinforcement material in MMCs, the creation of thermal stresses during
manufacturing is unavoidable. Therefore, the nondestructive characterization of these
composites is necessary in order to monitor their mechanical properties and to guarantee
their qualityv.

In thk present study the efcct of the volume content of reinforcement in metal -
matrix composites (MMC) on the two nonlinear elastic quantities, namely acoustoelastic



constants and nonlinearity parameter has been investigated. The nonlinearity parameter is
determined using two different methods and the results are compared.

THEORETICAL

Basically, all nonlinear elastic effects are due to the anharmonicity of the interatomic
potential. Thus, relationships betweei. quantities describing the elastic nonlinearity are
expected. In order to develop quantitative parameters for the description of elastic
nonlinearity, it is convenient to use the thermodynamic derivation of the elastic constants
starting from the elastic potential of the solid. If the lattice arrangement of a solid is
disturbed by an infinitesimal strain c due to the presence of an elastic wave, the energy of
deformation per unit volume O(E) can be expanded as a power series of strains such that

+ Ei + DD E Eikl +• il ijeklEm +"". (2)
0 aF U acij a k1ii 1a ija~1 amn k1m

According to Brugger [4], the elastic constants of the order n are defined as the n-th partial
derivatives of the elastic potential with respect to strain as

C.. = a (n)lii.. (3)
Ii... NJ...

If up to third order terms in F are considered in eq.(2), the stress-strain relationship can be
written as

Cij = Cijkl Ckl + Cijklmn iklmn (4)

where the Cijkimn are the third order elastic constants (TOEC) which need to be added to
Hooke's law (1) to allow for nonlinear deviations.

For isotropic materials, the tensor of the second order elastic constants reduces to
two independent second order elastic constants, known as Lame constants X and p.. These
constants can be determined directly from ultrasonic experiments by measuring the wave
speeds of longitudinal and shear waves using the relationships:

2 2

.t = p vT and X+22.t = pv2 (5)

The tensor of the third oreer elastic constants reduces to three independent third order
e!astic constants in isotropic materials. These are called the Mumaghan constants 1, m and
n. In order to measure these constants using ultrasonic methods the propagation velocities
of three different wave modes have to be determined as a function of an applied uniaxial
strain. The relative change in the ultrasonic velocity of a given wave mode with the applied
elastic strain normalized by the velocity of the strain-free specimen is called the
acoustoelastic constant (AEC) which is a characteristic of the material. The Murnaghan
constants can be evaluated from acoustoelastic constants using the relationships [6]

1 [ 11 -v)v 22Ivo 2 av21/v0 _V_/Vo0

- + -( +v 0 )+2v]
I - 2v V ae I +v aE ae

mv23/v0  1 v 21(6)
m=(_+_)[_ 21+ 0 2v-1l](6

1 +v 21 /V+v 0 e

n v2 /v_ - Iv23/v -VI +V aE a e

where v is the Poisson's iatio, X and pt are the Lam6 constants, vij is the velocity of an
ultrasonic wave with propagation direction i and polarization direction j, v0 is the velocity



in the unstrained specimen and e is a uniaxial strain applied in a direction perpendicular to
the propagation direction.

Another nonlinear quantity which can be obtained if eq.(4).is inserted into the.
equation of motion for particles in the solid's lattice, leads to the nonlinear wave equation

2u 2 22 au a2U

_ v. = - Pivi (7)
at2 aa a2 i a aa 2

where u is the particle displacement, i is a mode index depending on the polarization and
the propagation direction of the wave, a is a coordinate along the direction of wave
propagation and vi is the wave velocity of the mode i. The quantity p3i is the modal acoustic
nonlinearity parameter of the solid and can be expressed as a linear combination of the
second and third order elastic constants [5]. The solution of the nonlinear wave equation
can be given as

ui = AI sin (ka - cot) + A2 cos 2(ka -wot) (8)

where AI and A2 are the amplitudes of the fundamental and second harmonic waves,
respectively. The acoustic nonlinearity parameter is related to these amplitudes as

8 A2
k2a At2  (9)

where wo is the fundamental frequency, k is the propagation constant and a is the distance
measured from the generating transducer to the instantaneous position of the fundamental
wave in the solid. Its magnitude determines the extend of the distortion of the fundamental
wave. If one considers a longitudinal wave mode in an isotropic solid, the acoustic
nonlinearity parameter is related to the Lam6 and the Mumaghan constants by

3  21+ 4m
X + 2lýt

Using this relationship the acoustic nonlinearity parameter car, be calculated when the third
order elastic constants are known.

EXPERIMENTAL

In this study, two different sets of specimens were used. The matrix was an Al -
8091 alloy in one case and in the other case an Al - 7064 alloy. The chemical compositions
of both alloys are shown in table 1. As reinforcement material these composites contain SiC
- particles. The particles had a more or less globular shape, ranging from 1 - 5 ýtm in size.
The material has finally been extruded to rods. Micrographs taken for different cuts of the
specimens revealed a planar random distribution of the reinforcement in the plane normal to
the extrusion direction and a particle alignment along the extrusion direction.

A block diagram of the experimental set up for the determination of the nonlinearity
parameter is shown in Fig. I . A lithium niobate transducer attached to the specimen by a
solid bond is used to generate ultrasonic pulses. These pulses have typically a center
frequency of 10 MHz and a bandwidth of 200 kHz. The ultrasonic signal propagates along
the extrusion direction of the specimen whose surfaces are made parallel to each other and
are lapped optically flat. The 10 MHz fundamental as well as the 20 MHz harmonic signal
cause a distortion of the free surface of the specimen. The displacement amplitudes carried
by the two frequencies are measured in order to determine the nonlinearity parameter using
Ce(1. (9).



Table 1: Chemical compositions of the aluminum alloys in weight percent.

Alloying Elements

Alloy Si Fe Cu Mg Zr Li Zn Cr Co Al

8091 0.02 0.01 1.90 0.80 0.11 2.70 ---- ... .---- rem

7064 0.05 0.10 2.00 2.30 0.20 ---- 7.10 0.12 0.22 rem

For measurements of the absolute amplitudes, the capacitive detector technique
described in [8] has been used. This technique allows the detection of displacement
amplitudes of a free surface with a sensitivity of 10-3,A.

In order to verify the behavior predicted by eq.(9), the amplitudes of the
fundamental and second harmonic have been measured as a function of increasing source
voltage. A plot of the harmonic amplitude A2 vs. the square of the fundamental i, "iplitude
A, yields a linear relationship over the whole range of the driving voltages used & shown
in Fig.2 . The slope of a linear fit through these data is used to calculate the n':iinearity
parameter. In many of the engineering materials the attenuation of ultrasonic waves
depends on their frequencies. Unless the attenuation of the second harmonic is twice that of
the fundamental, a correction has to be made according to relationship [9]

0 = Pmeas. ' 

l)

I - exp [( 2oxj - 0x2) a]

where a1 and a2 are the attenuation coefficients of the fundamental and the second
harmonic waves respectively. The attenuation coefficients for 10 and 20 MHz longitudinal
waves in the MMC-specimens have been used to perform this correction. Another
correction due to diffraction effects has been neglected because of the large lateral
dimensions of the specimens.

R.F. Pulse Generator~l' 10- Lo-as t tznao
& Receiver [ w-ssAtnto

TEKTRONIX 191DC Power Capacitive Constant Amplitude
Supply 1 Detector Signal Generator

[PANAMETRICS 15 MHz
5052 DC-Block

Ultrasonic Analyzer

NI gated outputfTEKTRONIX [ HP 8590 B
2465 B Spectrum Analyzer

Oscilloscope

Fig. 1. Block diagram of the capacitive detector system.
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Acoustoelastic constants are determined by applying a uniaxial compressive stress
while ultrasonic waves are propagating transversely to the load direction. The relative
C'hanges in velocity for three different wave modes (Fig.3) are measured using the pulse
echo overlap technique. This technique is described in detail in [10] and can resolve
velocity changes up to one part in 106. The changes caused by the acoustoelastic effect are
typically in the order of one part in 104 and depend on the polarization of the wave. The
slope of the velocity data vs. the elastic strain is used to determine the acoustoelastic
constants and then, with eqs.(6), to calculate the third order elastic constants. The average
values resulting from measurements in two different propagation directions within the
quasi-isotropic plane are used to represent the material parameters.

RESULTS AND DISCUSSION

From measurements of densities and of ultrasonic velocities the second order elastic
constants of the metal matrix composites have been evaluated by Lee ct al. [ 131 using
eq.(5). Their results are listed in Tab.3 . From this table it is seen that both, the Young's
and shear moduli increase linearly with the SiC content. The Young's modulus follows
closely the isostress condition represented by

Ecomp = [EAI-ESiC]/[Esic-fAi + EAI-fSiC] (12)

where f is the volume fraction of the indicated phase.

The values of the acoustoelastic constants of the metal-matrix composites,
determined from the relative changes in the ultrasonic velocity as a function of elastic strain,
are the average values of the data obtained by Lee et al. [131 and are listed in Tab.2 . The
AECs are reproducible within 2%. From the table, one can see that the values of the AECs
of the 7064 alloy are larger than those of the 8091 alloy. Also the AECs for both sets of
MMCs decrease as the content of SiC increases. Smaller absolute values of AECs indicate a
smaller change in the ultrasonic velocity as a function of elastic strain which means a
smaller deviation from the ideal Hookean behavior of the material.



Table 2: Averaged acoustoelastic constants of the examined MMCs.

Material Acoustoclastic Constants

AEC 22 A% AEC 21 A% AEC 23 A%

Al - 8091 1.12 0 -2.59 0 0.87 0
+10% SiC 1.08 -3.7 -2.17 -19.4 0.82 -5.7
+15% SiC 0.92 -17.9 -1.91 -35.6 0.74 -14.9

AI - 7064 1.44 0 -3.10 0 1.93 0
+15% SiC 1.20 -16.7 -2.35 -24.2 1.27 -34.2
+20% SiC 0.88 -38.9 -1.85 -40.3 0.92 -52.3

From the acoustoelastic constants and the second order elastic constants, the third
order elastic constants were determined using eq.(6). From an analysis of error propagation
the inaccuracy is found to be highest in the Mumaghan constant I and is equal to 15%. The
inaccuracies of the constants m and n are 5% and 3% respectively. In general, the values
of the Mumaghan constants m and n are not significantly influenced by the content of SiC
within the experimental error. The constant m, however, has a tendency towards less
negative values, whereas the constant n is showing no trend at all. The Mumaghan constant
I changes considerably and even becomes positive when SiC is added. Compared to the
elastic moduli g.t and E, the third order elastic constants do not show a clear relationship
with the content of reinforcement, whereas those of the elastic moduli increase in a
predictable manner.

The Murnaghan constants I and m are used to calculate the nonlinearity parameter
according to eq.(8) . The values of the calculated nonlinearity parameter are listed in Tab.4
as 13caic. Also included in Tab.4 are the values of the directly measured nonlinearity
parameter as Pmeas. The experimental error is 10% for the calcuiated and 15% for the
measured nonlinearity parameter. For both 13cac. as well as Pmeas. the values decrease
considerably with increasing volume percentages of SiC.

As can be seen from Fig.4, the values of the calculated nonlinearity parameter for
the 8091 as well as for the 7064 alloys change linearly as a function of second phase
content. The values of the composites with the Al - 8091 matrix appear to be smaller than
those of the composites with the Al - 7064 matrix.

Table 3 : Second and third order elastic constants of MMCs.

Material SOEC [GPa] TOEC [GPal

X E 1 m n

Al - 8091 42.0 30.1 77.7 -34 -320 -438
+10% SiC 42.8 35.4 91.0 34 -313 -466
+15% SiC 42.4 37.6 95.7 33 -288 -454

Al - 7064 54.1 26.9 71.4 -33 -359 -515
+15% SiC 57.4 35.1 91.5 43 -343 -516
+20% SiC 54.3 38.0 99.2 24 -309 -486



"Fable 4: Calculated and directly determined nonlinearity parameter.

Material Pcalc. A% Pmeas. A%

AI - 8091 10.2 0 10.6 0
+10% SiC 7.4 -27.5 8.5 -19.8
+15% SiC 6.2 -39.2 6.9 -34.9

AI - 7064 10.9 0 8.7 0
+15% SiC 7.1 -34.9 6.6 -24.1
+20% SiC 6.2 -43.1 5.8 -33.3

P3 13 f 13

12 0 8091 12 9 8091

11 0 7064 11 7064

10 10

9 9

8 8

7 7

6 6

5 5
0 5 10 15 20 25 0 5 10 15 20 25

Vol. % particles Vol. % particles

Fig. 4. Calculated nonlinearity parameter Fig. 5. Measured nonlinearity parameter
as a funtion of particle content as a funtion of particle content

A plot of J3meas. vs. the volume fraction of reinforcement is displayed in Fig.5 . The
values of both composites are close to a linear relationship between Pmeas. and the volume
fraction of SiC. One value, namely that of the unreinforced 7064 specimen, is clearly
deviating from this behavior. Interferences in the backwall echo sequence obtained on this
specimen indicate a strong texture in the extrusion direction. Since the nonlinearity
parameter varies significantly in different lattice directions of single crystalline materials, a
texture is likely to change the value of the nonlinearity parameter.

The lower values for the nonlinearity parameter of SiC reinforced aluminum alloys
can be understood from the fact, that ceramic materials with low nonlinearity will lower the
nonlinearity parameter of aluminum alloys when a composite is formed. This does not
mean that a law of mixture is applicable to model the bulk nonlinearity of a metal-matrix
composite. Influences from the interfacial region between matrix and reinforcement are
expected to contribute to the nonlinearity of the composite.

Because there is no significant difference between the calculated nonlinearity
parameter uetermined in the isotropic plane and the one directly measured along the
extrusion direction, it can be assumed that the nonlinearity parameter depends primarily on
the overall content of reinforcement. Influences from the particle alignment in the extrusion
direction could not be detected within the accuracy of the measurements.

Theoretical investigations by Cantrell 1121 have shown that the nonlinearity
parameter is related to the coefficient of thermal expansion (CTE) which is also a nonlinear



quantity. In previous studies [ 11, 14], the coefficient of thermal expansion in MMCs has
been found to decrease with increasing amounts of reinforcement. Measurements of the
CTEs of the composites investigated in this paper are in progress.

CONCLUSIONS

The results of this study show that the acoustoelastic constants and the acoustic
nonlinearity parameter are influenced by the amount of reinforcement in metal-matrix
composites. Therefore, they are promising candidates to characterize the mechanical
behavior of MMCs nondestructively. Also, the two quantities clearly indicate a decreasing
elastic nonlinearity of the composite with the increasing content of SiC. The nonlinearity
parameter changes linearly as a function of second phase content.

The absolute values of the calculated as well as of the directly measured acoustic
nonlinearity parameter are in good agreement within the accuracy of the measurements.
This shows that both techniques, measurements of absolute amplitudes using the capacitive
gap receiver and measurements of the acoustoelastic effect, are suitable methods for the
determination of the nonlinearity parameter.

The direct measurement of the nonlinearity parameter using the capacitive gap
receiver requires a careful preparation of the specimen surfaces. The measurement of the
acoustoelastic effect is restricted to simple specimen geometries since it requires the
application of external stresses. The selection between the two methods depends on the
geometry condition of the sample.
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Acoustoelastic characterisation of materials
J. H. Cantrell and K. Salama

k bulk modulus
The increasing demand for new, more reliable k, bulk modulus of inclusion " Seazals P

materials, which are often used in hostile km bulk modulus of matrix
environments, has led to the necessity of K, Kij Salama-Ling proportionality constants
establishing equally reliable, quantitative KT compressibility
7,'echniques for the non-destructive evaluation Kv preasibility
(NDE) and characterisation of such materials. 1 wave propagation distance
Non-destructive evaluation methods are I, m, n Murnaghan constants
commonly used in applications ranging from /jki propagation matrix
materials processing and control to monitoring Ma components of uniaxial stress direction
the effects of environmental degradation and Ni components of unit propagation
the estimation of remaining useful life of direction
materials. Although linear ultrasonic methods p magnitude of uniaxial or hydrostatic
have long been among the most popular and stress
useful of NDE methodologies, this review is S entropy
concerned with the considerable effort that has ' compliance coefficients
neen expended recently on understanding, t time
:ieveloping, and applying non-linear t time

acoustoelastic techniques. Although t thermodynamic tension
applications to complex materials are usually T temperature
correlative, recent progress in the quantitative T~i initial stress tensor
modelling of the acoustoelastic properties of ui components of particle displacement
muitiphase alloys in terms of material vector
composition is also reviewed. Considerable i'ij displacement gradient
emphasis is placed on understanding the liij displacement gradient referred to
relationship between non-linear acoustoelastic deformed state
prooerties and the fundamental atomic (ui) acoustic radiation induced static
structure of simple materials. Such
considerations lead to an enhanced displacement
understanding of the effect of residual and U internal energy per unit mass
applied stresses on the acoustoelastic and U, components of wave polarisation vector
thermoelastic measurements of metallic alloys. v true sound velocity
Similar considerations of magnetic domain v, longitudinal wave true sound velocity
structure provide an explanation of the effect v,. v3 shear wave true sound velocity
of stress on the magnetoelastic properties of W natural sound velocity
ferromagnetic materials. Implications of these Wo natural sound velocity at zero stress
advances to the non-destructive xi components of particle position vector
characterisation and evaluation of materials
are discussed. IMR/223 cri direction cosines

ai transformation coefficients
J') 19q1 The Institute of Metals and ASM International. a- thermal strain tensor
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p average mass Lclsity ot mlatrix anuI nie Co llplcxities introouceuo in mleasurements ui
inclusion multiphase materials are addressed from a consider-

pi mass density of inclusion ation of mode!s giving the effective parameters as a
p, mass density of matrix function of total volume fraction of second phase
p,) mass density of material in unperturbed constituents.

state A considerable portion of the review is also
a stress tensor devoted to the effects of residual and applied
*w angular frequency stresses on ultrasonic measurements. Indeed. one

of the most important problems in the non-
Introduction destructive characterisation of materials is the

determination of residual and applied stresses. Such
Ultrasonic methods have long been used to charac- stresses play a fundamental role, for example, in
terise various properties of materials ranging from the corrosion or embrittlement of metals and in
the fundamental to the most practical applications, crack initiation. Acoustoelastic techniques as a
Ultrasonic measurements of fundamental material means of characterIsing such fields have been
properties, for example, have provided some of the extensively reviewed elsewhere, 6 and so will not be
first experimental evidence of the double well repeated here. Rather, in keeping with the spirit of
interatomic potential in vitreous silica.1 They have this review, the role of stress fields as they affect
also been used to quantify the superconducting the thermoelastic and, in ferromagnetic solids,
state of materials. 2 and have provided well estab- magnetoelastic properties of materials is addressed.
lished methods of testing lattice dynamical theories In doing so recent advances in stress field a,,sess-
of the solid state.- Several recent review articles ment not previously considered are presented. In
and monographs.6-u highlighting the practical order to clarify the meaning of the various elastic
applications of ultrasonic methods, are testimonials and mechanical moduli from a measurement per-
to the flexibility and utility of ultrasound in assess- spective, the connection between static or low
ing properties of materials from simple crack frequency dynamic moduli measurements generally
detection to the characterisatiorn of material micro- performed in mechanical testing and the second
structure and defect induced changes in elastic order elastic constants obtained in bulk ultrasonic
properties. Indeed, ultrasonic techniques have measurements is given in Appendix 1.
become an indispensable tool in the non-destructive The microstructural variation in acoustic prop-
characterisation, evaluation, and testing of erties has been the key to the development in the
materials. past decade oi a number of new microscopes which

The purpose of the present review is to sum- utilise acoustic waves in some fashion for obtaining
marise recent developments in non-linear acousto- the microscopic images.'11 2 The images so attained
elasticity that bear directly on the thermoelastic provide information quite different from that
properties, arid in appropriate cases on magneto- obtained in conventional light or electron micro-
elastic properties, of multiphase materials. Non- scopes. Different types of acoustic microscopes use
linear acoustoelasticitv entails consideration of the different energy sources, such as electron beams,
variation in the sound velocity as a function of the lasers, and piezoelectric transducers, for generating
state of stress in the material as well as the the acoustic images and are descriptively named.

consideration of acoustic harmonic generation and for example. the scanning electron acoustic micro-
radiation induced static stresses and strains in the scope, the thermoacoustic microscope, and the
material generated from an initially pure sinusoidal scanning acoustic microscope. Although the image
source. In order to emphasise the common basis of contrast and spatial resolution attainable in such
these related, but quite distinct, non-linear phe- microscopes are in large measure dictated by the
nomena the theoretical treatment of each phenom- details of energy source-material interactions, the
enon is initiated from the same set of generalised dependency on the local variations in the material
wave equations. While it will become apparent that elastic or thermoelastic properties, including
acoustoelastic measurements can be used to residual stresses, is a necessary consideration in
determine the effective second and higher order such interactions. Indeed, in some cases features
elastic constants as well as various mechanical directly associated with the residual stress fields can
moduli of materials, the emphasis here is on the be imaged,`' revealing even the subtlest influence
paiameters associated with and defined from the of thermoelasticitv on the contrast mechanisms.

measurement process itself. These measurement The concepts summarised in this review, when
defined acoustoelastic constants and non-linearitv combined with an appropriate model of the micro-
parameters offer the most direct route to the scope under consideration, are pertinent to an
characterisation of many important material prop- understanding of many of the contrast mechanisms
erties from interatomic potentials to stress fields in the various acoustic microscopes, particularly
and the state of fatigue. The connection with those involving acoustic bulk wave propagation.
fundamental dynamical properties is emphasised
throughout this review in an effort to underscore
the role of material anharmonicitv in acoustoelas- General equations of elastic
ticitv and thus to provide some link between wave motion
macroscopic acoustic measurements and the atomic Consider first the adiabatic propagation of an
properties of elemental or single phase material, elastic, bulk travelling wave in a lossless solid of
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arbitrary crystalline symmetry. The equations of and the elastic constants referred to the Lagrangian
motion (Newton's law) in Lagrangian (material) strain measure CikI.. was found by Wallace"' to be
coordinates a, are14  (Einstein summation of A =,
repeated indices assumed throughout text) A ik = Cj + Ti k

ý.rA ' = Ti6,k +I

Po. .- .- . . .... ........ (1) Aijklmn = Cjilmnik + Cjknl
6

tm ",+ Cijnickm + Cijklmnor- a l . . . . . . . . (9)
where xi are the components of the particle position The CjjkI are the nth order elastic coefficients of
vector, oa, are components of the stress tensor, t is Brugger-0 defined for adiabatic conditions by the
time, and po is the mass density of the solid in the nth order derivative of the internal energy per unit
unperturbed (natural) state. If the stress tensor is mass with respect to the Lagrangian strains
defined in terms of Lagrangian strain derivatives of
the internal energy per unit mass U(ak,rqkS,S) where C... = P. .•L. ... .(10)
q, are the Lagrangian strains and S is the entropy, P=o
the stress tensor is commonly called the first It is clear from equations (6) and (10) that Cii = Tij
Kirchhoff tensor is defined byt5 is the thermodynamic tension evaluated at q/ = 0.

i From equations (5) and (3) we find that cri == t =1

3U Cii = Tij when aulaa, hence r7, is zero. The
~i = Prik . . . .. (2) coefficient Cij is thus identified as the initial stress

Oqj/k Ti in the solid.
where (rik are the transformation coefficients
defined by Acoustoelasticity

,= ,k +-. ........... (3) Traditionally, acoustoelasticity has been viewed as

Sal that aspect of material anharmonicity giving rise to
the variation in sound velocity as a function of theIn equation (3). ak are Kronecker deltas and vet= state of stress in the material. Although acousto-

. ndnelastic measurements are a popular means of assess-'The La~raneian strains r;k, are defined by'"eTe L ing stress fields, the emphasis here is to explore the

6= (,Jak - .k)/
2 . . . . . . .  (4) relationships between acoustoelasticity and certain

aspects of material microstructure. In particular,
Mlany researchers (Brillouin17 and Born and the use of a measurement defined acoustoelastic
Huang's among others) have preferred to use the constant as a material characterisation parameter is
Boussinesq stress tensor 8,. which is defined in considered. Applications of the concepts developed
terms of derivatives of the internal energy per unit here to two phase materials are also emphasised.
mass with respect to the displacement gradient,
(½u,j'Saa) = u,i. Using equations (2)-(4). it is General theory
straightforward to show the equivalence of the two It is necessary to obtain the elastic wave velocities
stress tensors by writing as a function of applied or residual stress. It is

B U 371k, ._U 1U expedient then to expand the stress o~i in equation
8, = O -. = Po1 (1) about the homogeneously deformed initial state

AX, i.e.S. .. . . . . (5 )

A\notner stress tensor of relevance here is the j ~~ + (¶i(L f)+
thermodynamic tensions r,j defined by "1uktx Sal Sa

Sc = (OU)x±(¶ --+.. ... (11)
r~j= P, �...... 

X (6- o X 3Q,

muass ' expanded the Internal energy per unit where iik= Ilk - Ok. the overbar represents the
u e d ir evalue of the parameter referred to the deformed

mass i terms of the displacement gradients as state, and the expansion coefficients are evaluated

I at the deformed state X. From equations (1), (5),oC .4, - .Ak•iCui, (7). and (1I) we thus obtain

+r oa (7)
,I "11 P- " L 'z2i / ijkl ." . .

4-~ ~ ~ ~ ~ ~ ~~ 3. S!irlnli~ig.. .. . 7 " ' t2 Sal~aj '

where A are referred to as the Huang (or
propagation) coefficients. Equation (7) serves to where the propagation matrix
dehne the ,nth order Hluang coefficients as [-,jkl = Aijkt +4 Aiiklmnt'imn + .. .,.,

=- o,,( b 1 (3)
,,v: 3,,.:.,=, Assuming wave propagation of the form

>e r-'lItionhio between the Vluan2 coefficients til = UL exp oiwt - W.•) (14)
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where N = O/k, is the unit propagation direction lowest crystalline symmetry (triclinic crystal system)
and W = co/1K1 is designated 2 as the natural velo- this number reduces to 21 independent second
city, since it is the velocity referred to the natural order elastic constants and 56 independent third
state. Substituting equation (14) into equation (12), order elastic constants. For higher symmetries the
the set of linear equations for the unit polarisation number of independent constants are even further
vector _ is obtained reduced. For example, the independent elastic

constants reduce to 3 second order and 6 third
(Li-jk.NjVNI - poIV26ik)Uk = 0 .... (15) order constants for cubic crystals of highest symme-

Equation (15) is the basic equation of acoustoelasti- try and for isotropic solids (the highest attainable
city. It provides the variation in the sound velocity symmetry) the numbers are 2 second order and 3

(here the natural velocity) as a function of applied third order elastic constants.

or residual strain and wave polarisation. For isotropic solids the second order constants
often used in the literature are the Lam6 constantsConsider now the rate of change of the square of ofand an the tirdtorer constants

the natural velocity with respect to the applied A and A and the third order constants are often the

stress p (uniaxial or hydrostatic) evaluated at the Murnaghan constants 1, m, and n. These constants
natural configuration (i.e. where p 0). are related to the Brugger elastic constants Cijk,.for isotropic solids as8

-[( OW2) [(ab) 3ý (a a + 2 C,, = = C3

S P=o " " Sab 30 pq A = C1 2 =C 13 =C 2 3 =C 21 = C1 = C32

X ('3'O' 2))A = C-- C515  C6
" "p=0 21 + 4m C111

(ab (poW 21 - 2m + n = C12 3

= P p=O 3• rs P=O in - n/2 = C14-,
g. . . . . (16) /

where Srs,,b= (3qrf/( 3s/b)p=0 are the isothermal Mi C 155
compliance coefficients. For applied hydrostatic 4C 4 5 6 . .. .. .. .. .. .. .. .. ..  (20)
pressure or uniaxial compression of magnitude p
in the direction M where all other second and third order elastic

constants are zero. Voigt notation is used in the
b3it•) -6,b for hydrostatic pressure above equations for the Brugger elastic constants

J- pu. -MaMb for uniaxial (17) whereby the single subscript k replaces the sub-

compression J scripted pair (iji) a,.cording to the followingscheme:

Substituting equations (9), (13). and (15) (for the i. j = 11 22 33 32 or 23 31 or 13 21 or 12
natural state) into equation (16) gives the equations
of Thurston and brugger= '

r(poW2~1 In a typical ultrasonic experiment, one generally
X [(iNvV, measures as a function of applied stress the

-o variation in time required for a generated plane
wave front to propagate between parallel sarnp:e

+ UiUk(2POVV2.Sjkab surfaces. An inverse measure of that propagation

SNr.VVS'paCjrksp) . (IS) time is the parameter F defined by

where F = I-v ... ........... (21)

(On2),=o =(poWo) = CmrnsVrNsUmUn (19) where v is the true sound velocity and / is the
propagation distance in the sample in the homo-

Equations (18) and (19). derived for solids of geneously deformed state. Thurston and Brugger21

arbitrary crystalline symmetry. specifically show the have shown that the true velocity is related to the
dependence of the natural velocity and the change velocity referred to the natural state W by
of natural velocity with stress in terms of the second V= -w .... .......... (22)
and third order elastic constants of the solid. From
the experimental measurements of natural velocity where /o is the propagation distance in the undefor-
as a function o: stress the etjuations suggest that med sample. From equations (18) and (22) and an
one can determine the second and third order expansion of (/•I/ in terms of the Lagrangiar,
elastic constants of the material. Indeed, calculation strains,- one can obtain the expressions of Hughes

of the elastic constants from such measurements and Kelly:3 derived from isotropic solids whi
have become quite well established".3 '21 There are. relate the true sound velocity to the applied stress
in general. 81 second order elastic constants and a. Their expressions. for example, for axial £zress
S729 third order elastic constants, For solids of applied in a direction perpendicular to the wave
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propagation direction are are constants referred to unbounded or bulk solios

2 2;. 1 and accurately represent acoustic vave propagation
J)1n -V 2- 121 -[ - (1+ + when the dimensions of the sample are generally3k,, large compared with an acoustic w.,velength. Such

, a [ ;-t1 elastic constants, however, are quantitativelyA n + - . +-2# related to the elastic or mechanical moduli typically
.k0 L 

4
,L obtained from static engineering measurements or

F A [ , .+ 1 low frequency dynamic measurements as shown in
pv -A f + - 2)J (23) Appendix 1.3Ao In general, for a given comoination of stress,

where v1 is the longitudinal velocity and v, and v3  propagation, and polarisation directions, the

are the velocities of shear waves when the polari- relationship between the natural sound velocity and
sation direction is parallel to and perpendicular to stress may be obtained by integrating equation (25)
that of stress, respectively, to get

"T[tere is advantage, however, in measuring W(o) = W0+ WoH . (27)
changes in the natural velocity as a function of .......
applied stress, since such measurements are where Wo = N0), the natural velocity at :ero
obtained from time measurements in the deformed stress. As suggested by equation (27) unknown
state but the length measurements are referred to ,tresses can be determined when both the natural
the undeformed length of the solid. This is seen by velocity in the absence of stress and the acousto-
substitutin, equation (21) into equation (22) to get elastic constant are known independently. This

F = / W... ............ (24) approach was first used by Crecraft,24 who showed
that acoustoelasticity could be used as a practical

From equation (24) method for determining applied and residual stres-
ses in engineering materials. Theoretically, one

I I. 1 IW 1 (oW2) could calculate the acoustoelastic constants from
FIt - -p , (25) equations (I8), (19), and (25) if the second and

P P W- -third order elastic constants are known. Unfortu-
When evaluated at p = 0, it has become popular to nately, measurements of the third order elastic
refer to H a- the *stress acoustic constant' or the constants have beer performed mostly on pure
acoustoclastic' constant. It is clearly a material materials and some simple alloys. Indeed, the

parameter, since it depends on the second and third technique mostly used for such measurements have
order elast': constants of the material. Cantrell-2  been that of determining the stress dependence of
has determined the general relationship between the natural velocity, ie. the acoustoelastic constant
the fractional change in the natural velocity with of the material. It is important to point out here
respect to stress for a wave of polarisation U that the measured velocity and stress dependent
propagating along N. i.e. the generalised acousto- velocity changes in engineering materials depend
elastic constant HU,(U,N), and the fractional strongly on microstructural features which make it
change in the true velocity v to be necessary to perform a calibration between velocity

and stress (i.e. determine the acoustoelastic con-
"lJ.,.(U.;\) =. (26) stant) for each material in order for the method to

v Ir)rs be used in the determination of unknown stresses.
Microhomogeneity, texture, and weak anisotropy

where ri are the Lagrangian strains resulting from of the material, which are usually neglected in
the imoosed stress, and S are the compliance engineering applications of the theory of elasticity,
coefficients. For acoustic wave propagation perpen- cannot be neglected in the applications of acousto-
dicular to the direction of appied stress in isotropic elasticity. Results by Smith et al.25 show that third
solids, equation (26) shows that acoustoelastic order elastic constants for polycrystalline materials
constants are also equal to the fractional change in can differ widely, even for alloys having the same
the true velocity w1th respect to the applied stress.

composition. For structural aluminium of slightly
theodrcticn longitudinal w different composition differences as large as 50%the direction of applied stress in such solids, theractiona variations in the true and natural veloci- observed
ties differ by an additive constant.

The exact meaning of the experimental Models of two phase systems
parameter F in equation (25) depends on the Most experimental measurements of the acousto-
particular experimental technique. For example, if elastic constants have been performed either on
one uses a resonance or resonance derived tech- simple, single phase materials or on complex,
nique. then F is the acoustic standing-wave reson- multiphase materials that have been treated as
ance frequency f. If one uses a pulse coincidence single phase materials. It is important to recognise
technique, then F is the inverse pulse repetition that in quantitatively characterising complex
rate. It is important to emphasise that all the aboe materials one must also understand the effects of
equations specifically refer to acoustic bulk wave material composition on the measured acoustic
propagation in materials. The elastic moduli or parameters. In order to calculate the acoustoeiastic
constants used to quantify this wave propagation constant in a two phase alloy, Salama et al, 6
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assume that the precipitates i- the alloy can be respectively higher or lower than that of the solid
represented by a dilute suspension of spherical solution phase. since the difference between the
particles in an ininite solid solution matrix. The 'ongitudinal velocities in the precipitates and the
physical meaning of this idealisation is that the solid solution is usually small.
precipitates are so small and so far apart that all the Consider the application or a uniaxial stress in a
interactions between them can be neglected, no direction perpendicular to that of the longitudinal
matter what the size of the representative volume wave propagation direction. Differentiating equa-
may be. The effective elastic constants of such tion (34) with respect to stress a and assuming that
materials have been calculated by Christensen 27  in the dilute approximation (v),, = v, and that,
using the energy methods approach and Eshelby's tenuously, the densities of the two phases present
formula28 for the calculation of strain energy in remain roughly unchanged with stress variations.
systems containing inhomogeneities. For a dilute the fractional change in ultrasonic velocity in the
concentration of inclusion i, Christensen found that two phase material is estimated as
the effective shear and bulk moduli ji anid k are 1 (di,\ I = I ',v
related to those of the matrix as -- = -

15 (1 - V , ){l - ( ,al i -,)l f (28)

/ým (7 -vr) + 2(4 - 5v.)(/ijlg.m) = (I -

and

k 1 - [ (2(k;)kn,))f f \+/ ,

k,m 1 + [(k, km,)(kr - 4 jim !3 )

From the definition of the acoustoelastic constaf,.
w.,here the --ibscripts in and i, respectively, denote equation (25). it is concluded from equation (35)
matrix and in.lusion, f is the volume fraction of the that the change in the effective longitudinal wave
spherical inclusions under dilute conditions, and v,, acoustoelastic constant for the two phase system
s Poisson's ratio of the matrix. The ultrasonic caused by the presence of precipitates is linearl,

longitudinal velocity v' is related to the elastic proportional to the solume concentration of the
moduli /i and k as' inclusion and depends on the elastic moduli of the

= k + 4 .c3 . . . ... .. (30) precipitates and the solid solution phases, as well as
their stress dependences. These latter quantities are

where pisthe average mass density of the medium generally unavailable and make the calculations
trT,atr Pix Lus inclusionls), of the effective acoustoelastic constants rather

difficult.Case 1
For an inclusion with elastic moduli not too Case 2
different from those of the matrix, such that When the elastic moduli of the precipitate are much
k, - and k, ý ki. but /., - m-ur, 0 and greater than those of the matrix, i.e. p., >> ,am
k,- 0, equations (28) and (29), respectively, and ki >> ku,. equations (28) and (29) become,
become respectively

p. -- (p - )........ (31) 15(1 - Vm)f

and ,2(4 - 5). . . (36)

"k -- k,,+ k - kr,)f .. . . (32) and
Equationd (31) and (32) indicate that the elastic k k, + (km + 4 /A,/ 3 ) f ..... (37)

moduli of a t,,o phase material is a function of the These equations indicate that the effective shear
inclusion concentration as well as the difference and bulk moduli of the two phase alloy system do
between the corresponding constants of the inciu- lot depend on those of the precipitates; however.
sion and matrix. Substituting equations (31) and they var,' linearly with their concentrations. Substi-
(52) into equation (30) gives for the longitudinal tuting equa.ions (36) and (37) into equation (30)
velocities and considering v, = vL[2(2 - v)l1.ý, where v, is the

pvjI= pm( i'),,-/Pm(Vi)n, - p,(Mvi), (33) shear wave velocity, we obtain in the dilute
approximation that

For allovs containing dilute concentrations of pre- 3(3 - 5v,,)
cipitates, p o Pm and equation (33) can be written ( -. tvfI (fl)T(4(38)

as (4 - SVm)

F]Again in order to obtain an expression for thev -( ) -f 1(v) - p--2-i(ý) (34) effective acoustoetastic constant in alloys conrakl..1.7

precipitates with elastic moduli much higher than

Equation (34) indicates that the longitudinal velo- those of the solid solution, equation (38) is diff-.cn-
city in the two phase alloy increases or decreases tiated with respect to the stress a, again under t-e
from that of the solid solution phase according to condition that the stress is applied in a directicn
whether tile densit'y of the precipitates is perpendicular to the wave propagation direction.
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Under such conditions and considering the which a certain phase relationship among the pulses
relationship between the longitudinal and shear is maintained, or even a hybrid of the above. In any
v-ave velocities, &i[2(1 - 1')i( 1 - 2'v)j, the case the measurement parameter of interest is
relative change in the effective longitudinal wave generally a frequency or the inverse of a pulse
acoustoelasiic constants 1-11 is given as repetition r:!e which is measured as a func'ion of

the impressed strain or stress in the material.
f (29)

H, (H 2). Experimental results

where In order to study the sensitivity of acoustoelastic

15(1 - vm)(1 - 2v,,) constants to changes in microstructLre, Heyman et
B,= (4 = ... . (40) at.3" measured the acoustoelastic constants in the

( 5-,5v)' four carbon steels AISI 1020, AISI 1045, AISI

and where (Ht), is the shear wave acoustoelastic 1095, and ASTM 533B. In steel alloys, carbon in
constant and (H,), is the longitudinal wave acous- excess of the solubility limit (0-02 wt-%) forms a
toelastic constant of the matrix material. Equation second phase, namely iron carbide (cementite),
(39) indicates that the relative change in the which precipitates from the solid a'-ferrite.
effective longitudinal acoustoelastic constant HI of a Compared with fcrr-re, cementite is very hard and
two phase material is linearly proportional to the its presence %,ithin the tt:'rite increases the strength
vo!ume friction of the dilute second phase. The of the steel. Table 1 lists the values of the
constant of proportionality depends on the Pois- acoustoelastic constants and the longitudinal wave
son's ratio of the solid solution phase and the velocities obtained for these steels. Also included in

re!ative difference between longitudinal and shear the table are the volume fraction of second phase
%\ave acoustoelastic constants. Comparison of the precipitates in these alloys and the percentage
ithcoretical models with experimental reultts is changes in the acoustoelastic constants with respect
presented in the section on 'Experimental results' to those of the ILX)% solid solution. The latter are
below, but first techniques for measuring the obtained by extrapolating the experimental values
acoustoclasticconstants are brielv discussed. of the acoustoelastic constants to 100 % solid

solution. The relative variations in the acoustoelas-
tic constants as a function of volume fraction of

Measurement techniques precipitates are plotted in Fig. 1, which shows that
The -iltrasonic measurement techniques generally the acoustoelastic constant decreases linearly as the
used in the determination of acoustoelastic con- amount of carbide (cementite) phase is increased in
stants arc based _i the propagation of continuous the allov. In this study the amount of carbide phase
waves (C'V). radiofrequenc.'y (rf) bursts (tonebur- is calculated using the lever rule and the nominal
>1,), or broadband pulses in the medium of interest, carbon content in the alloy. These results were also
Comprehensive descriptions of these techniques confirmed by Allison et al.35 where the acoustoelas-
have been given in several review articles and tic constants in the four steels AISI 1016, AISI
monographs. e.g,. McSkimin,-9 Truell etaL..`` Papa- 1045. AISI 1095, and AISI 8620 are found to
dakis,-I Breazeale et al.," and Ratcliff.-'-3 In view of decrease linearly with the increase of the carbide
the extensive review literature .)n acoustoelastic phase.
meaisurement methodology details are not given More recently Schneider et a!. 6 studied the
here, but it is pointed out that the techniques relationship between the acoustoelastic constants
g4enerallv are based on measured parameters that and percentage of precipitates in the five aluminium
are ultimatelv referred to a time standard. The alloys 1100. 3003. 5052, 6061. and 2024. Aluminium
specific technique may utilise a standin,-wave pat- alloys that contain small percentages of other
tern, a pulse coincidence or pulse overlap scheme in elements such as copper, magnesium, and silicon

Table 1 Variations of acoustoelastic constants and longitudinal ultrasonic veloci-
ties with volume fraction of compound precipitates in carbon steels and
heat treatable aluminium alloys

Volume Acoustoelastic Change in
fraction of Velocity, constant. ascoustoelastic

Alloy precioitates. m s-1 GPa constant. %

Steel

100% ferrite 0 440° 0
AISI 1020 3.1 5889 418 5.0
ASTM 5338 39 5880 410 6.8
,'Sl 1045 7-3 5883 375 14.8
AISI 1095 147 5910 325 26-1

Alumin j mn
'00% solid solution 0 83" 0
rC61-T6 ýAI-Mg-Si) 3 0 6112 79 .18
2C24.- 351 IA9-Cui 5. 6153 7..7 0-0

zro'n ev:ravowa'on o0 ocosteeiasisc constan:s v. volume fraction
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as function of volume percent carbide (cementite)
phase 3 Graph of acoustoelastic constant of aluminium

alloys as function of aging time

form intermetallic precipitates such as CuAI2,
Cu N gAI12, and Mg 2Si. These precipitates are very in the acoustoelastic constants of carbon steels
hard and cause the strengthening of the aluminium measured by Heyman et al.3- and by Allison er
alloy. Some values of the acoustoelastic constants al.,' and of the aluminium alloys 6061-T6 and
and the ioniitudinal wave velocities are also given 2024--T351 measured by Schneider et al.:6 are due
in Table 1. The results of this study, shown in Fig. only to the presence of precipitates in the solid
2, reveal that the acoustoelastic constants in the solution phase, a comparison between theory and
heat reatable alloys 6061 and 2024 decrease as a experiment can be made. Further, since the precipi-
function of the second phase precipitates. The tates in both systems investigated are of higher
behaviour in the work h-rdenable alloys 1100. rigidity than those of the solid solution phase,
3003. and 5052, however, is opposite. i.e. the equation (39) is considered to be a better represen-
acoustoelastic constants increase with the increase tation of the experimental data.
of percentage of precipitates. Figures 1 and 2 indicate that the relative changes

A plot of the acoustoelastic constant as function in the acoustoelastic constants for the longitudinal
of aging time in aluminium alloys is shown in Fig. 3. waves vary linearly with the volume fraction of
The results indicate that the acoustoelastic constant second phase, as predicted by equation (39). The
does not change significantly with aging time. figures also show that the constant of proportion-
although the average size of the precipitate particles alitv between the relative changes of the acousto-
are expected to change. 31 It is thus inferred that the elastic constants and the volume fraction of second
acoustoelastic constant is not significantly influ- phase in the steel and aluminium systems are the
enced by changes in the size and distribution of same and approximately equal to 1-8. This means
second phase precipitate particles, at least of the that the acoustoeiastic constants in these allovs can
size represented in the figure. be calculated empirically using the values of this

Equations (35) and (39) obtained above repre- quantity in the 100% solid solution material and the
sent .ne changes in the acoustoelastic constants volume fraction of second phase in the alloy. This
when a second phase precipitate is in equilibrium acoustoelastic constant is the proper vaiue to be
with a solid phase. By considering that the changes used in the residual stress determination of the

ailov.
Considerable research effort has been devoted in

I0 recent years to the development of metal matrix
composites. The non-destructive characterisation of

S.the elastic and anelastic behaviour of such materials

"E "0 ...... is essential to their manufacturing processes. The
6061 " effects on the measured elastic properties of

0 .variations in the volume fraction of second phase
. .SiC particles in a number of aluminium alloy
-,.~4 matrices have been reported.-•) Of particular

702 interest here are the measu:ed values of the
acoustoelastic constants as a function of the volume

, percent SiC in the matrix. A typical data set is
< 700

0 1 2 3 4 hown in Fig. 4 for SiC particles in a 7064 alu-
%, Second Phase Precipitate minium alloy matrix. The relationship between the

2 Graph of acoustoelastic constant of heat treat- acoustoelastic constant and the percent SiC is seen

able Al alloy 6061 (Al--Mg-Si) and 2024 (Al-Cu) as to be approximately linear up to roughly IC%

function of volume fraction of second phase volume fraction. This behaviour i• a nominoi

precipitates agreement with equation (39) and thus indicates
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' 7064 AEC 13 order elastic constants of the material, and the
- 120 - * 7064 AEC 12 2 directions of wave propagation and polarisation.

- * 7064 AEC 23 *Ihe term (u,/ in equatioy (43) is a constant that
80 7064 AEC 21 represents a static or dc displacement arising from

o r ----. the non -inearity of the m aterial. T he m ainitude of

40 i the static displacement has been the source of some
- controversy which has been recently resoived by

Soh Cantrell er ale.l2. 3  They showed that the static
"Off - displacement is intrinsically linked with the exist-

0 ence of a non-zero acoustic radiation stress in the
-- ----- ----- solid which when properly included in the pertur-

.30, 2 bation solution to equation (41) yields the value

02 25 (u,, = 20. 5 -L/2U/S. . . ........ (45)

Volume Percentage of SiC The sign of the static displacemen, is governed by
4 Graph of acoustoelastic constant as function of the sign of the non-linearity parameter. For pure

volume percent SiC particles in 7064 (AI-Zn-Mg) mode acoustic wave propagation directions the sign

of the non-linearity parameter is typically positive

that up to 10.) volume fraction, the SiC particles and according to equation (45) leads to a radiation

are Con- id'crd to be of dilute concentration in the induced static dilation in the solid within the spatial

aluminium matrix. Theicafter. the curve rapidly extent of the acoustic wave. A negative non-

becomes nonrlinear. linearity parameter, on the other hand. gives rise to
a radiation induced static contraction. This phe-
nomenon has been confirmed in sin.le crystal

Non-linear wave propagation silicon,-- germanium,-" and vitreous silica."

A-\ further aspect of acoustoelasticity is the distor-
t1o01 0t in acoustic vaveform as it propagates Measurement technique
throuah a material. Such distortion is another
nai!ttstation of the same material interatomic Equation (43) indicates that the acoustic non-

anharmonicitv that governs the stress dependence inearity parameters ma be obtained either fromof the sound velocity, but it results dependncth measurements of the absolute amplitudes of the

different mechanism involving efri athre fundanzental acoustic wave and generated second
fields. The quantitative measure of such non-linear harmonic wave or fromn measurements of the

,iave propagation is the acoustic non-uinearitv fundamental and static displacement signals. Spe-

paraieter /3 It. like the acoustoelastic constant is cifically, if ti and , are the measured amplitudes of

found to be a very useful parameter for assessing the fundamental and second harmonic signals, then
material the non-linearity parameter/3 is determined by

inielproperties.thno-iert
3 = S. (.........(46)

General theory Kw/

Considetr the solic to be in the natural state, i.e. A block diagram of the equipment arrangement
, . Substituting_ equations (5) and (7). into typically used in non-linearitv parameter meas-

equation (I) and retaining first order non-linear urements is shown in Fig. 5. The diagram shows the
terms '.ves se:up for both the harmonic generation and the

- 5%2k static displacement techniques. A rf signal (typically
0, = .4 ,+ .Kkn - (41) in the range 5-30 MHz) from a CWV oscillator is

5r- ea' � a cn-a, combined in a mixer with a gating pulse from a

The self-resonant or mutual resonant solution to logic and timing generator. The rf pulse is amplified
equation (41) assuming the boundary condition by a broadband linear rf power amplifier and is

used to drive a narrow band lithium niobate
I, = tUcosw( at a = I .... (42) transducer bonded to one end of a cylindrical

is to a first order in the non-!inearitvi" sample. The transducer generates a gated ultrasonic
signal or toneburst which propagates through the

,= ii) -'- .,cos(.n - ) sample. The toneburst is received by a broadband
3t k "'") (43) air-gap capacitive transducer at the opposite end of

the sample.
hnere / is the distance of wave propagation and 1 is The capacitive transducer is a parallel plate

the non-linearitv parameter defined by 4' arrangement in which the sample end surface

-A_,4,,r .VV,.VVL.'7,'•UL functions as the ground plate. The other plate is an
P . . . . . (44) optically flat electrode which is recessed approxi-

A",INA, U,'mate 7 um from the samele surface. A dc bias
'ust as in the case of the acoustoelastic coefficient. (typically 50--I50 V) is applied through a 1 MQ
the non-linearix parameter is seen from equations resistor to the electrode. Gauster and Breazealeu'
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5 Block diagram of typical equipment arrangement for measurements of acoustic nan-linearity parameter.

have shown that the measurement of the output capacitive transducer is connected to a low fre-
vo3tage from such a capacitive arrangement may be quency (of order 3-300 kHz) preamplifier by a

converted to a displacement measurement of the short, low capacitance lead. The output of the
sample surface using the relation preamplifier is sent to an oscilloscope where the

V, -=-Vb(/S)(47) static displacement signal is displayed. A templateV. .......... is placed over the screen to record the static
where Vd is the output voltage, Vob the dc bias displacement shape. The shape of the static
voltage, n the displacement of the sample surface, displacement signal is that of a right angled triangle
and sthe gap spacing betwcen the capacitor plates, whose slope is equal to the right-hand side of
Yost and Breazeale4 7  have shown that the equation (45) with / - 1. Calculation of the non-
capacitive transducer is capable of measuring linearity parameter is obtained from measurements
disolaceinent amplitudes of the order 10-6 m, of the slope and the fundamental amplitude •

hich is quite adequate for measurements n the
range 10-.i3-l,0-i i representing typical ampli-tudes of second harmonic and static displacement Acoustic non-linearity parameters

stgnalsand material properties
he dishownemeat themeasiuremeof t fundamental The acoustic iseconnparameters ta play a

and harmonically generated toneburst are obtained central role in determining the thermoelastic prop-
bv switching the output a 1 the capacitive transducer erties of crystalline solids, since they directly
into the appropriate (preferably narrow band if) quantify the anharsnonic character of the lattice
preamplifier. The output of the preamplifier is sent modes. Cantretl: o has shown that if one considers a
into a rectifier and filter assembly which converts crystalline solid to consist of a large number of

the toneburst into a detected signal. The output of incoherent non-linear acoustic radiation sources
the sample and hold is measured by a voltmeter identified with the vibrating particles of the lattice,
and recorded. The capacitive transducer is now then randomisation of the resulting acoustic field
switched out and a Thevenin equivalent network is together with the assumption of a stochastically
switched into the circuit. A ssubstitutional cali- independent, fuctuating radiation field at the abso-
bratton signal corresponding to either the lute zero of temperature leads to an expndssion of

tfundamental or harmonically generated signal, as the temperature dependent rautation field in terms
the case may be. is now switched into the Thevenin of the zero point field. This leads directly to
equivalent network and adjusted in amplitude until expressions of the thermodynamic state functions
the voltmeter connected to the sample and hold that intrinsically include the non-linearity
reads the same value as that of -he ultrasonic parameters as a direct measure of structure depen-
toneburst measurement. Since the amplitude of the dent modal anharmonicity. These non-linear" state
calibration signal is measured at the input to the functions in turn lead to calculations of the tem-

Thevenin equivalent network, the measured value perature dependence of elastic moduli4 9 as well as
is equal to thc signal produced by the capacitive to calculations of the thermal expansion coeffi-transducer, cients"" directly in terms of the non-linearity

In order so display the acoustic radiation induced parameters.
static displacement pulse the output of the The relationship between the non-linearitv
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Table 2 Comparison ot structure, UU1UiIlly, diU UC LC -'c C-Aid..ui - 3 I.• .

dcoustic non-linearity parameters along induced static displacement pulse, (ui) in equation
[100] direction of cubic crystals (43), into a series of bulk solitons in samples of

Structure Bonding ;1- Range of 13 vitreous silica. The large negative non-linearitv
NaC' lonic +4 6 14-5.4 parameter gives rise to a contractive static pulse in
bcc Metallic 8.2 7.-8-8 the material which when combined with the large
fcc (-iert gas) van der Waals 6.4 5.8-7.0 velocity dispersion in the medium provides condi-
fcc Metallic 5.6 4.0-7-0 tions suitable for the generation of solitary waves or
Fluorite Ionic 3-8 3-4-4-6 solitons. The observations of bulk solitons and
Zinc blende Covalent 22 14-30 acoustic radiation induced static contraction in

vitreous silica may be of some significance in the
statistical mechanical treatment of amorphous

parameters and fundamental lattice properties is structures: 5 a subject of considerable current inter-
15 est. Vitreous silica is known to have a negative

intrinsic. Cantrell50 hac ;hown from a survey of
crystals of cubic symmetry that for a given acoustic thermal expansion coefficient at low temperaturescrysalsof ubi symety tat or gien coutic where long wavelength vibrational modes dominate
mode (i.e. direction of acoustic wave propagation wher lng avclpen rationAl modes dominate
and polarisation) the non-linearity parameters are the dynamical properties. At higher temperatures,

found to be ordered according to the crystalline where the expansivity is positive, the shortfoun tobe rdeed ccodin tothecrytaline wavelength vibrational modes become more popu-
structure. Results for wave propagation along the waveednth vbatti nalmo s becomenmoed popu

lated and the lattice dynamics is dominated by a[100] direction in cubic crystals are given in Table?, local quartz-like structure having positive non-
Listed in the table are the structure of the crystal, linearity parameters along the pure mode propa-
the type of atomic bonding, the range of values of J3 oat directions. The sign of the thermal expans-
for all crvstals having a given structure, and the gion dar ve oivity at high and low temperatures is thus reflectedaverage values of ,,he fls in that range. The acoustic i h ino h o-iert aaeesapo

non-linearity parameters are seen to be strongly in -the sign of the non-linearity parameters appro-non-inerityparmetes ae sen t be trogly priate to the atomic structure 'seen' by the domin-
ordered according to the type of crystalline struc- pit oteaoi tutr en ytedmn
urde.ed acrnge oate lattice vibrational mode at that temperature.iure. disin g of values of/3 for a given structure The significance of atomic structure and its effectis distinct; overlap of ranges occur , nly slightly fora overlap ofranges. ocu inluece sghetlyp on the non-linearity parameter is not diminished

fcc and fluorite structures. The influence of the type in considerations of complex materials. Material
of atomic bonding may be inferred from a compari-
son of the fcc structured crystals The ls for the fcc microstructure is governed fundamentally by evenmetallic bonded crystals and the fcc van der Waals more complicated arrangements of atoms, including

bonded crystals are approximately equal even random or amorphous-like configurations in many
i ocases, which also affect the non-linearity parameter.

thouh It is inferred that the influence of nie Of particular concern here, however, is the fact thatthe mechanicaf properties of many engrineering
bonding on the value of the ,oon-linearity parameter mecias properies ot many engineeringIs ml oprdwt hto h emtia materials are derived, at least in part, from theis sinall compared with that of the geometrical
arrangement of atoms defining the structure, presence of secondary phases in the solid solution

In order to explain these results Cantrell.•' matrix. The presence of the second phase, for-llowingan approach suggested byGhate 2 and by example. raises the flow stress: and the extent of
iki an a . rl b d strengthening depends to first order on the volumeGranatofraction size. and characteristics of the second

i st approximation on a short range, two body,.
tra force potential of the or-phase precipitates which form during the manufac-, pe He turing process. A mathematical model has been

sli wed that the non-linearity parameters depend pro ces . A mathematal model ha een
on , on the atomic arrangement of the crystal and proposed by Cantrell et al. + eiving the effective
the hardness' parameter ot the Born-Mayer non-inearitv parameter of an alloy as a function ofte tial. He also found that the hardness totai volui,,e fraction of second phase precipitates.pot HAlthough the relationship is in general non-linear
para ieter together with the atomic nearest neigh- (see Appendix 2 for derivation) the equation is
bour eparation distance determines the shape or app ed 2o d erivt nthe eqaon iscurvature of the potential curve. The dependence approximated to within experimental error for
on the shape, rather than the dof the volume fractions of second phase up to -10% byon he iap, athr tan hemagnitude, ofth the linear expression
potenti I curve provides a general explanation oft
the rest.1ts of Table 2 including the insensitivity of /3 =3(1 Rf) ..... ........ (48)
thc aco - it;c non-linearity parameters to the bond
strength. xvhere

While t'le model successfully explains the results 2-kCi)]
of Table 2 for crvstalline solids, it does not readiiv R = 2 - eiI t(C' It)i fi(C't) A
predict the siwn and magnitude of the non-linearity
parameter ,r vitreous silica, an amorphous solid. CL•" I___C"_ .49)
The 13 paraf eter for vitreous silica is negative-4 in (C"II)p 2 3(CtO~P
contrast to -he positive values of the parameter
typically rme: uced for the pure mode propagation In these equations fp denotes the total volume
directions in -rstalline solids. In addition. Yost fraction of second phase precipitates; the Cis are
and Ciantreil4 - have observed what they beiieve to "quasi-isotropic' second order elastic constants
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6 Graph of acoustic non-linearity parameter of 7075 0 50 100 150 200 250
(Al-Zn-Mg) as function of volume fraction of Aging Time, h
second phase precipitates 7 Graph of acoustic non-linearity parameter of 7075

(AI-Zn-Mg) as function of aging time

(Voigt notation). The overbar denotes the values of
the parameters for which f, = 0, i.e. pure solid
solution; the subscript p refer to values for the total linearity parameter of Al 7075 as a function of
second phase precipitates taken collectively: the volume fraction of second phase precipitates.
subscript i refers to the individual constituents of The dependence of the non-linearity parameter
the solid solution: the superscript c refers to solid on the second phase precipitates for alloys and the
state constituents; and e, is the *depletion constant' dependence on the hardness parameter of the
for constituent i formed from solid solution. Born-Mayer potential for single crystals suggest a

Razvi et al. 7 provided experimental confirmation possible relationship between the non-linearity
of equation (49) for measurements of 0 in the heat p m ing hardness number
treattable alu iluin alov7-)T parameter and the enoineer

.Zn Meven though engineering hardness is measured by a
results of Aeir measurements of the effective plastically deforming test and the pertinent atomic
non-tinearit,, parameter 0 as a function of volume mechanisms are complicated by microstructural
fraction of -econd phase precipitates f, are shown details. None the less, measurements of the non-
in Fig 6..-\ least squares fit to the data results in a linearit parameters on aluminium alloys as a
linear curve with a 1.0 correlation coefficient given linety p aranium alloys aafunction of Rockwell F hardness were reported by
bv the so d line i'U the figure. The lack of Li et al. Their results are shown in Fig. 8. Similar
experrirne,. I measurements of the non-linear;'t measurements on 18%Ni maraging steel as a
parameters and the elastic constants of individual function of Rockwell C hardness were reported by
second ph .scs of Al 7075 prevents an exact calcu- Yang cr al.ss and are shown in Fig. 9. In both cases
lation of t-,: effective non-linearity parameter of there is a strong correlatior between the non-
the niateri,' directly from equation (48). None the tinearity parameters and the hardness number.
less, the :-reement between the linear form of Finealry pa, Elbers9 reported the discovery of a crack

uation (-1,) and the lineýariiv of the experimental closure phenomenon that occurs with metal fatigue.
data is evi, ont. Measurements of the intercept and He noted that closure of the crack planes near the
slope of tfc curve yield a value of 6-29 for the crack tip can occur while the applied stress is still
non-lineari v parameter of pure solid solution ofA\ tensile. The existence of a crack closure stress
7075 and a value of 0.12 for R.

It was sumed in the mathematical model that
the numb, of randomly oriented grains contained
within a p thlenrth of the propagating sound wave 10
:s sufficien 0v laroe that a sood ,tatistical samplin

of quasi-is- :ropic behaviour is achieved. It was thus
expected t. at the 5 cm pathlength in the specimens $ 3 1-
allows It ,ide variation of average grain size
without violating the quasi-isotropic assumption. A
manifestaticn of proper statistical sampling would 2 6

be the invariance of the non-linearitv parameter as j
a function of grain size. Figure 7 shows the _E
measured non-linearity parameters in Al 7075, Z
corrected for attenuation, as a function of aging up
to 237 h. No si2nificant variation in the effective ,S 2
occurs although the average grain size is expected 55 65 75 85
to change. It is inferred from these results and trom Hardness,HRF

Fig. 0 that the mathematical model oualitativelv 8 Plot of acoustic non-linearity parameter of Al
predicts the correct variation in the effectie non- alloys v. Rockwell F hardness
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14 second harmonic generated at constant fundamen-

tal amplitude is plotted as a function of tension
T load. Crack opening occurs at a load corresponding

30.- to the peak ot tihe generated harmonic amplitude.
12 300A

Stress-temperature dependence of
q 200A j sound velocity

C 10 The variation in the temperature dependence of the
o sound velocity as a function of stress is the basis of

,. T a new method of characterising residual or applied
stress fields in materials. Consider the thermo-

8 __- dynamic tensions (equation (6)) to be a function of
20 30 40 so 60 the Lagrangian strains ,% and temperature T, i.e.

Hardness HRC tj = tij(r/,f. The differential can be written

9 Plot of acoustic non-linearity parameter of 18% Ni dt,j = - ;,A.dT + C,ild?7kI ....... (51)
maraging steel v. Rockwell C hardness where .i = -(3tj 13T),, is defined as the thermal

stress tensor. For constant stress (i.e. dt,j = 0) from
opens the way for defining an effective stress equation (51)
intensity factor 1,. given by

0= (- Ocosure)(:rTb)" ..... ............ .... (50) . . . . (52)

where or is the applied tensile stress, urosurc the where
crick closure stress, and b the crack half length.
The precision of 1,, depends on how well one can =.................... (53)
determine a.. It is generally difficult to ,dTI
determine 13losure experimentally, since conven- is defined as the thermal strain tensor. For isotropic
lionai crack opening determination is imprecise. solids and cubiccrystals
Hlowever. Yost et al.• have resolved this difficulty
by developing a technique based on the fact that as .....716,; ... .......... (54)
a crack in a compact tension specimen is opened where r/ is a scalar strain parameter. For this case
acoustic second harmonics are generated at the
Iunbounded) surfaces of the crack interface. A ti = -p6 . . . .. ..  . . . . . . . . . .  (55)
t',.pical data set is shown in Fig. 10 ,here the

where p is a hydrostatic pressure. Thus from
equations (f2)-(55)

200 • t
S . ......... (56)ZT KT

where KT is the compressibility and crT is the
thermal expansion coefficient. From eiuation (56)

>• it can be inferred that a temperature dependent

E stress is induced in the material through the thermal
expansion coefficient. For relatively small changes
in the temperature, the stress p is linearly depen-

C dent on temperature and from equation (18) is seen
E 100 to give rise to a linear variation of sound velocity
o with temperature.
o nSalama and LingM6 considered the effect of stress
E on the temperature dependence of the ultrasonic

velocity of aluminium and copper alloys by experi-
mentally determining the relative change in the
temperature derivative of the natural velocity
(3WIST) as a function of applied stress o. A
graphical representation of their results is shown in
Fig. i1. They find that the linear curves of Fig. 11

are represented quite well by the empirical
0 1000 2000 equation

Tension Load, lbK (57)

10 Graph of acoustic second harmonic amplitude "c 0oL\3T o
generated at unbounded surface of crack
interface in compact tension specimen as func- where (5W18T)o is the temperatare derivative of
tion of tensile load (11 lb • 0,454 kg) sound velocity at zero stress, (&WIST)0 is that at
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temperature dependence of ultrasonic velocity in
metallic alloys varies linearly with stress as ob-

20 - served experimentally. A similar calculation and
conclusion were obtained independently by Chern
-e a!_67

More recently, Cantrell`ý obtained an analytical
expression for the constant K by considering the

15- explicit temperature dependence of the elastic
C moduli via the quasiharmonic-anisotropic-
" continuum model of crystals. 69 The effect of
o applied or residual stress was made explicit by

10 expanding the elastic moduli about the state of zeroZ 10+
0 stress in a manner analogous to that leading toU

equation (18). The generalised proportionality con-

"o A (2024-0) stant KP,, analogous to K in equation (57), for
- B (2024-0) arbitrary applied stress upq is found to be

"+ 0 C (2024-0) - . )-' r nr ( d3ijpqrv" K,,q NNIUiUk)[-2-kimn\ (T
O D(6063-T4) K ( - _____ ___

+ E (6063-T4) ST SSr [~~~~SS,,pq ,,,,

X .VNrUUkUUUj + C,,k(inn-- ) r N, '1,

0 25 50 75 100 125

Applied Compressional Stress, MPa +Scn n)fpqA'1 'AUUk - 2' " OT i •q j1"Po 2 -

x T -- (VPVq - CrtklmnSmnpqIVjIVjIlJk j

.. . . . .. . .. (58)

SA (Annealed)

> L B (Annealed) 0 where
-6 -- OC(A 110) 0k 3n,a)O 1,)• o•: kljpo• -'. . . (59)

SA E (CDA 110) 0 ST -T

S4- and
ra •~~~Cat~y,5oo00 ,;

0 a_ - kBPOZ_. 2
CT + ST.

Q+ 43 • ,, - - , ,27oS l,
- .1 - -I.1 " 1

" 0
0 50 100 150 200 (Co-i,..awmn * C,.o ... n,.

p{ V2 +

Applied Compressional Stress, MPa x 1x Uu U,. + 6 C•psomunoooUu U:.)Nm,","
a Al arloys; b Cu alloys

11 Plot of temperature dependence of acoustic .. ... ......... (60
natural velocity as function of applied stress where kB is Bohtzmann's constant, with

applied stress. a is the applied stress (compressional y , - [2putWU,uuI3
in their experiments), and K is a proportionality 2p°W2

constant equal to 2-- x 10-3 MPa- for aluminium + (Ca,,nn +CaOrnunsU'U,)N.,Vm] 161)
alloys and 2-5 x 10 ' MPa-' for copper alloys.
These results were confirmed in steel and other and
aluminium alleys bv Salama et al.62 4s

5  3y, I

A preliminary calculation of the temperature 127--7-r (Ca13,16mn

dependence of the sound velocity at zero initial Stir6 2p°W-

stress was reported by Salama.• He also obtained a -- Ca•lmunUuUý + 4 C•munvLuUG,)Nmn
comparison between the calculated stress derivative . . . . . . . (62)
of the temperature dependence at zero initial stress
and experimental values of the stress derivative. The experimental measurements of Salama and L.ing
The results yielded reasonable values for the stress used a longitudinal ultrasonic wave propagating

:nternationai -Materials Reviews 1991 Vol. 36 No. 4



in a direction perpendicular to a uniformly applied stants calculated for untaxial stress applihe along
conipressional static stress. Their work was per- [001] and compressional wave propagation along
formed on quasi-isotropic polycrystalline solids. For [100] in these materials are 1.8 x 10' MPa-' for
such an experiment situation the generalised aluminium and 3.0-X10' MPa-' for copper.
expression for Kpq., equation (58). reduces tos These theoretical values are in very good

agreement with the experimental values obtained
,3C,(QlF 1)-5Si by Salama and Ling for corresponding alloys of

= (2 C.i+ + C12)\these elemental metals and suggest that the bise
metal of a given alloy system dominates the

C1 Sl, + (13Ci 2 )S' stress-temperature of the sound velocity in the
S(T 5 \ T alloys.

- ý7+ C1 - )S"-(-L ~ Low field magnotoacoustics
A novel technique for assessing stresses in ferro-

X( 3 CII S12 ] magnetic materials has been developed by Nam-
1 -T-C 11_12  C1l 2S 1) kung et al.70 The technique is based on the

variation of the sound velocity measured as a
S....... (63) function of low field magnetisation of the material.

The normal crystalline structure of a solid is
Note that equations (58) and (60) involve the generally altered when the solid is ferromagneti-
temperature derivatives of third order elastic con- cally ordered. For solids such as iron the cubic un..
stants. From equations (61) and (62) it can be seen cells are spontaneously deformed into tetragonal
that such derivatives may be written explicitly in structures with the longer edges aligned along the
terms of fourth and fifth order elastic constants -naqnetisation vector. The magnetisation vectors in
when the quasiharmonic-anisotropic-continuum turn are oriented along one of the six equivalent
model is used. Conversely, the experimental meas- crystallographic (100) directions. A two dimension-
urements of K provide a method of determining the al representation of the net domain structure for
fifth order elastic constants of the material in this the case of zero net magnetisation and zero initiai
approximation provided the fourth order constants stress is shown at the left in Fig. 12a. The effect of a
can be determined from other methods. For pure residual or applied stress a on the ferromagnetic
aluminium and copper single crystals the K con- state is to alter the energy density of a given

(2)

a00

H

J o'fec' of ieno iial svress. , effect of tensile inial stress: c effect of conr, s-- ,ve ini;al stress

12 Two dimensional representation of net magnetic domain structure
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domain by the amount7I Fig. 12b and c. The applied magnetic field strength

Ek....= K•a- + is shown to increase from zero at the left to some
--~ .. .. .. 3 maximum value indicated at the right in the figure.

-'.*,•cr, 2 ý1a2,2 -t- a")/2 The effect of net domain orientation on the- m

-- (L. LO c:yiY/2 + LY2LYY, sound velocity in the ferromagnetic material is
+ a3a'Y3YI) . . ........ (64) governed by the relative amount of 90' domain

walls available in the material at the time of the
where K'i' is the first anisotropy constant, A.'0 the velocity measurement. The elastic modulus E of
saturation magnetostriction along the (100) axis, ferromagnetic materials is given by
ý.T, that along the (111 ) axis, and the ors and /'is o
are direction cosines of the magnetisation vector E-. ... ........ (65)
and uniaxial stress axis, rcspectively, with respect to Eei + ,•,i
the cube axes. where o is the applied stress, or, the linear elastic

For transdomain stresses the magnetoelastic strain, and -,e the magnetoelastic strain. The
energy densities are generally different for adjace,'t magnetoelastic strain is generally assumed to be
domains and give rise to a net pressure acting on proportional to the total area of 900 domain walls.
the domain walls separating them. From equation From equation (65) and Fig. 12, the expected
(64) the net pressure (i.e. energy density) is functional change in sound velocity as a function of
non-zero only for those adjacent domains whose applied magnetic field strength H for various states
magnetisation vectors are at right angles to each of initial stress is qualitatively shown in Fig. 13. It is
other (i.e. 90' domain walls). Under tension the 90' of interest to note that tensile and compressive
domain wall motion is such that the net volume of stresses give rise to initial slopes of opposir-
domains oriented along the uniaxial stress axis is polarity and thus provide a means of testing the
increased as indicated by the domain representation sign of the initial stress.
at the left of Fig. 12b. Under compression the
domains orient close to a plane perpendicular to the __

stress axis as shown at the left of Fig. 12c. In both 2L 25 0
cases the effect of stress is to decrease the area of°I
90' walls. The stress induced 90' wall motion, C;

however. is generally restricted bv the interaction n. 175 80 Mpa

between the walls and various lattice defects. " • • 120 W~a
Hence, complete domain alignment under stress 125

does not geneiallv occur in the case of impure "60 Pa

ferromagnetic materials like steels. -0LZ 75
Whea an external magnetic field is appied to the 0-

ferromagnetic solid, domains with low Zeeman .

energy become seed domains and their volume C 4)
begins to expand. In this case both 10S and 90' r0
wall motion occurs such that as the applied field _ -25
increases more domains become oriented along the
applied field direction. The case for zero initial -s 7

stress in the material ;, illustrated in Fig. 12a. The 0 5 10 15

relative change in net domain structure as a Induction, kG
function of applied magnetic field is dependent on .
the domain structure initially induced by the stress 225 1)

at zero magnetic field conditions as illustrated in -40 MPa

CL. 175-
-80 MPa

CT - 0 125i

"< •>0 • 120- MPup

>- 0 75 L b

H o5 i0 15

Induction, kG
a non-compressive stresses; b compressive stresses

13 Predicted changes in sound velocity as function 14 Changes in sound velocity in AISI 1020 steel as
of magnetic field strength for various states of function of magnetic field strength for various
initial stress states of initial stress; PPM parts per million
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Namkung et ai.• .fl have performed an exten- borne out in experiment. The models, indeed, do
"sive series of natural velocity measurements in provide a more comprehensive understanding of
various steel samples using :he pulsed phase-locked the influence of material composition on acoustic
loop technique.3- Their resu<rs,3 for AISI 1020 stec-.I properties and. hopefully, will serve as catalysts for
are shown in Fig. 14. The curves are in, nominal the development of better, more coinprehensivC.
agreement with the model curves in Fig. 13. Their models of compositional influence on wave behav-
results 0'72 for railroad steel, however, show sonic iour. The success of many non-destructive
deviation from the model. Specifically, the curves at evaluation efforts and the evolution of new non-
tension indicate a greater modulus or velocity destructive methodologies rests in large part on the
change than the curve at zero stress. In addition, abi'ity to model comprehensively such microstruc-
the unstressed curve is relatively ,1at until a rather tural influences on acoustic properties. The con-
large magnetisation is induced in the sample. sideration of compositional influence, including
Namkung et al.73 explain that the deviation results magnetic or other domain effects where appro-
from the high degree of local lattice strain that priate, and the linking of acoustic non-linearity to
significantly impedes the motion of 90' walls but has the basic lattice dynamical behaviour of materials
little influence on the 180' wall motion. While the are necessary to provide the proper science base for
180' wall motion contributes to the magnetisation advancement and innovation in non-destructively
of the material, only the 90' wall motion affects the assessing, characterising, and testing the thermo-
elastic modulus and velocity changes. The unstres- elastic and mechanical properties of materials.
sed curve is thus expected to remain relatively flat
until high field strengths are achieved. The velocity Acknowledgments
increase at higher fields is caused mainly by domain
rotation and in part by 90' wall motion. The effect The authors would like to thank Drs J. H. Heyman,
of initial tension is to aid the magnetic field in W. T. Yost, and M. Namkung for helpful discus-
moving 900 walls at a somewhat reduced field sions. K. Salama would like to acknowledge the
strength. This results in an increasingly upward shift support of the Army Rese:ý-ch Office under con-
of the tension curves as the initial tension increases, tract No. DAAL03-88-K--0096.
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la ') for an isotropic solid in terms of the Lame can be considered effectively unbounded when the
constants A and A can be written in the form ultrasonic frequencies are sufficiently large that the

acoustic wavelength is small compared with the
21,, = 2 , ,tm - ................ (66) dimensions of the sample.

where 0 is the dilation or change in material volume Poisson's ratio v is also defined from static
defined by conditions as the ratio of the lateral strain to the

longitudinal strain and is obtained from equation
6 = l + E-, + '..3 . . . ... .. (67) (70) as

Jnd e, are the linear strains defined in terms of the E- -.

displacement gradients (Jui/caj) as v = - - . ..... (73)ElI 2(,k + ýL)

I -4- ......... (68) It is clear from the above relationships that the
2 3a, caj various moduli are intrinsically related. For

Equation (66) is obtained directly from equations it is easily shown that

(5), (7), and (20) where only the linear terms are Ev 2v(7
retained in the final expression. The /t constant is (1 + v)(I - 2v) I - 2v

often referred to as the shear or rigidity modulus
and is given the symbol G by many authors. The and
Lame constants can be obtained from meas- E
urements of the compressional and shear bulk wave . . .. . .. . (75)
velocities of the unstressed (i.e. a = 0) sample as 2(1 + v)
indicated by equations (23).

"The bulk modulus k is an important engineering
modulus defined from a static measurement of the APPENDIX 2
change in the material volume resulting from an
applied hydrostatic pressure p as Non-linearity parameters of

k - AP + 2p!3.(69) multiphase alloys

AO +-2A13....... A mathematical model was developed by Cantrell
er al.56 to describe the effective non-linearity

The right-hand side of equation (69) is obtained by parameters of multiphase alloys. The model is
writing (7, = -p6,, for the hydrostatic pressure and based on the law of mixtures for the non-linearity
using this expression in equation (66). As indicated parameter and is reproduced here to underscore the
in equation (69), the bulk modulus can also be essential features and assumptions not brought out
calculated from knowledge of the Lame constants in the text.
determined from ultrasonic bulk wave meas- Consider a rotation of the Cartesian reference
uiiements. frame such that the direction of acoustic wave

Consider now a cylindrical, isotropic solid and propagation is alvays along the x or I-axis of the
deform the solid statically along the cylindrical axis, rotated coordinate system. Then perform a second
which is defined as the x or I-axis. The surface of orthogonal transformation on the system which
the cylinder is stress free and so from equation (66) diagonalis,.s the non-linear equations o' motion,

oil X . equation (41), such that the equations are deccup-
led into three independent equations corresponding

'.......0 .......... (70) to the three wave polarisation directions. Perfor
. m, rning these same transformations on the general

stress-strain relationship of equation (5) and keep-
Young's modulus E is defined as the ratio of the ing only terms to first order in the non-linearity lead
applie z d axial stress I to the longitudinal strain - to the relationship between the transformed stress
and from equation (70) aq and the transformed displacement gradients

(3ua1(a,) given bvyi (no sum on j)

E -3- -. . . . . .. (71) 8w 1
ell A - .a . . .. (76)

Although equation (71) is defined from static ca t

conditions. Young's modulus can be obtained from where /a." and v .re linear combinations of second
measurements of the velocity VE of low frequency and third order elastic constants, al is the La-
longitudinal waves propagating along the cylinder grangian coordinate along the x or I-axis, and
axis as j = 1.2,3 is a mod.e index representing the appro-

E =pv. (72) priate polarisation direction. Consideration 1.,
restricted to longitudinal waves (j = 1) in quasi-

It is important to emphasise that the velocity vE isotropic solids (i.e. solids consisting of rando-,
measured under the above conditions is not equal oriented grains). Thus the superscripts a,
to :he velocities measured in unbounded media, as scripts are dropped and the longitudinal stressc-, .i
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written equality of stresses, we obtain

_- -l 1( 0

where C'l, is the longitudinal second order elastic v( ,8,)
constant written in V'olgt notation and /3 is the 2O
acoustic non-lineat ity p rairneter. Soi% tig for
(3Su /a) in terms of a we obtain Equating like powers of aT, we obtain

(G-) , •7 . .. . ... (86)
S Cl1  2 'it C,I

Consider now the solid to consist of any number of and
phases N. Assume that for a given phase i, the
grain orientations are perfectly randor (no texture) C2 - - ...... (87)
and that the number such grains contained within a , (C t)-

path length of sound is sufficiently large to provide
a good statistical sampling. To the extent that such In general, a non-linear relationship is found
conditions are mnantained the value of the effective between the effective non-linearity parameter ý and
non-linearity parameter is expected to be indenen- the volume fraction fi of individual phases because
dent of grain s:ze. of the appearance of C~1 in equation (87). It is of

In order to obtain the appropriate mixing law for interest to point out that for liquid media the
;3 detine V0 and po to be the initial (unperturbed) second order elastic constants C. = 0 and
volume and mass density, respectively, of the solid. C11  C12. In this case (=t)-Y can be identified
The local transformation from the initial state to with the liquid state compressibilities and equation
the dethrmed state V or p is defined through the (87) becomes identical to the results of Apfel 4 for
Jacobia&i immiscible liquid mixtures.

V Assume now that the solid consists of any
. .. ... .) number of distinct second phase precipitates and

, p that the relative volume fractions of constituent

The volume at any tine is considered to consist of second phase precipitates for a given alloy are
n ber V otu pconstant - only the total volume fraction of secondphase precipitates is considered to change. Hence.

N the effective ron-linearitv parameter 3p, and theV -' V ................... (80) eftfective (C~z)p of the second phase precipitates

taken collectively remain unchanged. The inva-

"Iicn tioin equations (7)) and (SO) riance of the relative volume fractions of second!
phase precipitates must necessarily come at the

. " J i (8i) expense of the solid solution constituents. It J.
assumed that the depiction of the constituents of
solid solution occurs linearly as

l, hc JI - ', ) is the Jacobian for phase i and
- 0 jV) is the volume fraction of phase i. (=J-- e,f . (Ss'

K xpandinl' the Jacobian i n terms of the
Eadinp the ac ni teidrmsnis ( and keeping where J, is the present volume fraction of solid

is ea retradiens solution constituent i. f, is the total volume fractiol
the nar s all strains, then (Einstein of second phase precipitates, Jý is the volumt
SI-1,1um 1tio fraction of constituent i in pure solid solution (i.e.

J --- I (- .. . .......... (82) when fP = 0), and e, is the 'depletion' constant for
constituent i.

Suhstituting equation (82) Into equation (81) gives From the above considerations equation (86) can
be written

I = 7 1 + .

Consider now the quasi-isotropic solid and assume CI, I (Ci')' (CI I),
that for a given phase , the grain orientations aresufficiently random and of sufficiently large number where in equation (89) and in all following equa-that each phase responds individually as an isotro- tions the summation is taken over solid solution

pic structure. Under such conditions, equation (83) constituents .,y, the superscript c refers to solid
nay be written solution constituents, and the subscript p refers to

the second phase constituents taken collectively. It
- - ( has been assumed, somewhat tenuously. in writing

N_' ,. .equatvon (89) that the solid ,olution constituents
behave as an immiscible mixture. While this

in the notation of equation (77). From equations assumption is not strictly true, the summation term
(78) and (79), together with the assumption of local in the equation is. none the less, representative of
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tiofs(SS) and (89) solution. For typical values of the C1rs and O3s the
- coe'ftients of the terms containing fp in equation

-4-" - C' . (90) (92) are estimated to be of order unity. Expanding
(Cl);, equation (92) in a power series for small values of

hc, her, and keeping only the linear terms, gives
l x7 1 a 5 : /91 + R£) . . . . . . (94)

S. .. . . . .-_ . . . . . (9 1)

w)here the constant

is the solid solution contribution. - I__ 1
Similarly, from equations (87), (88), and (90) it is R 2 ej

found that the effective non-linearity parameter (Cl 1) f(C'i A

of the solid in terms of total volume fraction of ',
second phase precipitates ft is -iven bv.2 j - ) . . . (95)Z7 I ~~(CIOP (:I)

S '+ (C1), (c I Equation (95) is a linear approximation to equation
(92). A survey of typical values of (CII)i and ý,

S >I2 "-indicates that equation (95) should be accurate for
X-f) CI -I •--!')Pei most materials to within typical experimental

uncertainty for volume fractions as high as approxi-
S. . . . .. . (92) mately 10% .

where

I .... Rei, 19V.. .... (93)
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ELASTIC STRENGTH OF PARTICLE AND FIBER REINFORCED
METAL-MATRIX COMPOSITES

B. GRELSSON and K. SALAMA

Department of Mechanical Engineering, University of Houston
Houston, Texas 77004

ABSTRACT

Conventionally, metal matrix composites (MMC) are reinforced with either particles or fibers.
Recently, a new class of composites where a mixture of particles and fibers is used as
reinforcement has emerged. The particles improve the isotropic mechanical and thermal
properties, whereas the fibers introduce directionally favorable properties for specific
applicatious of the material. The elastic properties of three different matrix alloys containing 6%
alumina fibers and varying alumina particle volume fractions of 9, 13, and 17% have been
determined using ultrasonic velocity measurements. The results show that the elastic moduli
increase with the particle content and the composites have the highest elastic stiffness in the
directions of the fiber plane. A model is developed to explain the observed elastic moduli of this
type of composites. The model uses results of the theories by Ledbetter and Datta for spherical
inclusions and Hashin and Rosen for aligned fibers. Furthermore, it includes an averaging
procedure suggested by Christensen and Waals. The agreement between measured and
calculated elastic moduli is found to be good. In a second series of measurements, the elastic
moduli in two sets of extruded MMCs and one set of pressed /MCs are determined. These
composites are reinforced with silicon carbide particles. Their elastic moduli as well as their
elastic anisotropics are explai- Ad using the theories discussed earlier.

INTRODUCTION

In order to increase structural efficiencies in modem design, materials possessing high stiffness
and high strength are required. One class of engineering materials fulfilling these requirements
are metal-iiiatrix composites (MMCs). In these composites, properties of the material can be
tailored by the appropriate selection of matrix and reinforcement materials and by their mutual
arrangement in order to meet specific needs of the designed component. The matrix and the
r17iiforcement are to be selected so that they combine their different mechanical and elastic
properties in a synergistic way. Also, microstructures resulting from different fabrication
processes are found to influence properties of these composites and provide valuable
information for their further development.

Many models have been developed to determine the effective elastic moduli of composite
materials. Most of these models deal with reinforcement in the form of spherical particles
(Ledbetter and Datta, 1986, Budiansky, 1965), ellipsoidal inclusions (Eshelby, 1957, Chow,
1977) or infinitely !vong fibers (Hashin and Rosen, 1964, Hill, 1964). Ledbetter and Datta used



a multiple scattering theory to predict the elastic behavior of composites with a
nonhomogeneous particle dismbution. In the model they assume that the particles together with
the matrix form an enriched "sea" that surrounds "islands" of pure matrix material. These non-
spherical islands are aligned and produce anisotropy. On the other hand, in order to determine
the effective elastic properties of fiber reinforced materials, Hashin and Rosen introduced the
composite cyiinders model. In this model, the composite is considered to be comprised of
infinitely long circular cylinders embedded in a continuous matrix phase. Each fiber has a
radius, a, which is surrounded by an annulus of matrix material of radius b, and the ratio a/b is
considered to be constant for all composite cylinders. In order to obtain a volume filling
configuration, the absolute size of the cylinders must vary considerably.

In some industrial applications composites used are of a more complex nature, where a mixture
of particles and fibers is used as a second phase. To our knowledge no models that describe the
elastic properties of these composites are available. The present study is concerned with
composites reinforced with low values of both particles and fibers, and hence, no interaction
between fibers and particles is assumed. In modeling these composites, we first consider the
matrix material and the particles to form an effective matrix. Since the particles are
homogeneously distributed in the metal, the effective matrix is considered to be homogeneous
(Ledbetter and Datta, 1986). The effective matrix is then considered to be reinforced with fibers
which are randomly oriented in one plane. The influence of the fibers on the elastic moduli of
the composites is then determined first by using the composite cylinders model for an aligned
fiber system (Hashin and Rosen, 1964) and second by preforming a geometric average
procedure (Christensen and Waals, 1972) which takes care of the 2-dimensionally random
orientation of the fibers. The results obtained show a good agreement between calculations and
measurements where details are given elseýwhere (Grelsson and Salama, 1990).

EXPERIMENTAL

The metal matrix composites used in this investigation consist of aluminum alloys as the matrix
material and either SiC-particles or alumina fibers and particles as the reinforcement. The
composites based on Al 7064 and Al 8091 were obtained as extruded rods of 25 mm in
diameter. The specimens based on Al 6061 were received as pressed plates of the dimension 6 x
25 x 60 mm. The alumina reinforced specimens were manufactured by squeeze casting and
received as bars of the dimension 12 x 12 x 50 mrm. The volume percentage of reinforcement in
the different sets of MMCs is shown in Table 1. Specimens are cut from the as-received

Table 1. Manufacturing method, matrix alloy and volume fraction of
reinforcement of the MMCs investigated.

Manufacturing method Matrix alloy and volume fraction

of reinforcement

Extruded rods Al 7064 + 0% SiC
A] 7064 + 15% SiC
Al 7064 + 20% SiC
Al8091 + 0% SiC
Al 8091 + 10% SiC
A] 8091 + 15% SiC

Pressed plates Al 6061 + 0% SiC
Al 6061 + 25% SiC
Al 6061 + 40% SiC

Squeeze cast bars A132 + 23% A12 0 3

A13 + 19% A12 0 3
A1100 + 15%A120 3
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Extrusion Compression Compression
3 Direction 3 Direction Direction

Extruded Al 7064 and Pressed Al 6061 Squeeze cast
A] 8091 MMC rods MMC plates MMC bars

Fig. 1. Specimen geometry and designated coordinate systems&

composites and the faces of each specimen are machined flat and parallel to within +_25 -gm. Ile
coordinate systems are chosen such that in extrud*_d samples the Xl- and X2-axes are
perpendicular to the extrusion direction. In the pressed specimens the X1- and X2-axes are in
the plate perpendicular to each other and the X3-axis is oriented parallel to the compression
direction. In the squeeze cast samples the X1- and X2-,directions are in the fiber rich plane at
right angles to each other and the X3-direction is normal to the fiber rich plane. Fig. 1 displays
schematically the cut of the specimens, the manufacturing parameters, and the orientation of the
coordinate systems. For all specimens the microstructure is examined in the three orthogonal
planes in terms of particle size distribution and area fraction covered by the reinforcement.
Measurements of ultrasonic velocitieý were performed using the pulse-echo-overlap method
with is described in details elsewhere (Salama and Ling, 1980). X- and Y-cut transducers of 10
and 2.25 MHz were used for the generation of the longitudinal and transverse waves,
respectively. The elastic constant are calculated using the relationship Cij = p Vii2 where p is the
mass density.

RESULTS AND DISCUSSIONS

Extrudd MM~s

The measured Young's and shear moduli along the three principal axes in the Al 7064 MMCs
are listed in Table 2 as a function of the volume fraction of SiC. The same moduli for the Al
8091 MIMCs are shown in Table 3. Also included in these tables are the elastic moduli predicted
using a model in which the composites are assumed to consist of an alumrinum matrix and

Table 2. Calculated and measured Young's and shear mnoduli of the Al 7064
MMC specimens. Moduli are shown in units of [GPa].

SAl 70(A + 15% SiC Al 70 + 15% SiC

Modulus calc. meas. calc. meas.

Ell 90.0 90.3 96.8 99.9
E22 90.0 90.5 96.8 97.2

E 33 90.9 91.,4 98.1 190.5

G 1 2 34.0 34.9 36.6 38.0
G 13 34.1 35.6 36.8 39.6
G 23 34.1 35.3 36.8 38.4

I. . V
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Table 3. Calculated and measured Young's and shear moduli of the Al 8091
MMC specimens. Moduli are shown in units of [GPa].

MMC Al 8091 + 10% SiC Al 8091 + 15% SiC
Modulus caic. meias. calc. meas.

E 11 92.6 91.3 99.3 96.8
E2 2  92.6 91.8 99.3 96.7
E3 3  93.2 92.6 100.2 98.3

G12 35.7 35.8 38.4 38.1
G 13 35.8 36.2 38.5 38.7
G 2 3  35.8 36.1 38.5 38.5

homogeneously distributed particles of spherical shape. The particles, however, are arranged so
that they form unidirectional fibers of particle-rich and particle-free aluminum. This arrangement
is chosen to model the microstructure observed in the extruded composites containing spherical
particles where the particles cluster together and form areas with high particle concentration and
islands of pure matrix material. Due to the extrusion, these areas align in a rod-like shape along
the extrusion direction.

From Table 2 and Table 3 one can see that the anisotropy for predicted Young's moduli between
the extrusion direction and the two transverse directions is of the same order (- 1%) as that of
the measured moduli. The anisotropy predicted for the shear moduli is negligible and the
measured shear moduli is within the experimental error. However, there is a tendency in all
measurements indicating that the shear stiffness is lower in the XIX2-plane than in the other two
planes. This agrees with the difference observed in the calculations of Young's moduli where
the extrusion direction is found to be stiffer than the two other directions.

Pressed MMCs

The measured Young's and shear moduli along the principal axes in the Al 6061 MMCs
together with the elastic moduli predicted by the model assuming dilute concentrations of
homogeneously distributed particles of spherical shape are plotted in Figs. 2 and 3 as a function
of the volume fraction of SiC-particles. The plots clearly shows that the model predicts the
overall increase of the elastic moduli relatively well for specimens containing 25% SiC.
However, it fails for the 40% SiC-reinforced specimen. In this specimen, the values predicted
by the model are much smaller than the measured ones. The disagreement between predicted
and measured moduli is due to the fact that the model assumes a dilute concentration of
particles. The plots in Figs. 2 and 3 also indicate that the increase of the moduli deviates from a
linear relationship towards higher values of volume fractions of reinforcement. This behavior
may be attributed to particle interactions when the mean-free-pathlength between them is
reduced as their volume fraction is increased.

The measured elastic anisotropies found between the directions in the plate and that normal to
the plate can be explained by the metallurgical investigations where it is observed that the area of
the particles in the compression direction is slightly larger in the compression direction than that
in the plane of the plate. This suggests that the particles have the shape of spheroids and that
they tend to align during the compression such that their c-axes coincide with the compression
direction. The alignment of the particles results in a higher elastic stiffness in the plane of the
plate which agrees with the measured elastic properties. The metallurgical investigations also
show that the aspect ratio is only slightly less than one. According to calculations by Ledbetter
and Datta, such a low aspect ratio does not result in elastic anisotropies as large as they are
found in the investigated MMCs which are approximately 5%. Calculations assuming an aspect
ratio of 0.8 predict an anisotropy of the order of 1% for the Al 6061 matrix reinforced with 25%
SiC.
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Table 4. Calculated and measurect Young's and shear moduli of the squeeze cast MMC
specimens. Moduli arc shown in units of IGPa].

MMC Al 123 + 23% A1i20 Al 13 + 19% Al-20 Al 1100 + 15% AI2Q3
Modulus caic. meas. calc. meas. calc. meas.

E 1 1 102.2 101.9 94.9 97.1 88.0 86.4
E22 102.2 102.0 94.9 97.2 88.0 88.2
E33 99.6 100.7 92.1 94.3 85.0 83.9

G 12 38.8 38.4 35.9 36.9 33.5 32.8
G 1 3 37.4 37.8 34.4 35.2 31.9 31.0
G23 37.4 38.2 34.4 35.8 31.9 31.1

Measurements in the unreinforced material have shown that the texture present influences the
elastic properties significantly. Here, the texture accounts for a 4% higher Young's modulus in
the compression direction. Thus, it seems reasonable to consider that the texture is responsible
for the major part of the anisotropy observed in the reinforced specimens.

Squeeze Cast MMCs

In the squeeze cast specimens, the alumina fibers are randomly oriented in one plane whereas
the alumina particles are also homogeneously distributed. The elastic moduli along the principal
axes of the composites are predicted using a model which assumes the composites to be
comprised of an effective matrix consisting of the pure aluminum and the homogeneously
particles. The effective matrix is then considered to be reinforced with planar-randomly
distributed fibers. The predicted as well as the measured elastic moduli are listed in Table 4. The
results show that the increase in the elastic moduli due to the reinforcement is reasonably well
predicted by the model. A more crucial test of the applicability of this model is its ability to
predict the elastic anisotropy between the directions in the fiber-rich plane and the direction
normal to the plane. Since the fiber content is the same for all three specimens, the anisotropy is
expected to be more pronounced the lower the stiffness of the effective matrix i.e. the lower the
concentration of alumina particles is. This behavior is experimentally observed as shown by the
values of the Young's and shear moduli in Table 4. The difference in the moduli between the in-
plane directions and the normal direction is less pronounced the higher the stiffness of the
effective matrix becomes. Quantitatively, the measured anisotropies are well predicted by the
model.The model, however, assumes that there is no interaction between particles and fibers
and therefore it is more suitable for composites with low particle content.
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Elastic Nonlinearity in Metal-Matrix Composites

H. Mohrbacher* and K. Salama

Department of Mechanical Engineering. University of Houston. Houston. TX 77204. USA

Abstract. Parameters characterizing the elastic nonlinearity in metal-matrix composites
are studied. The composites consist of the aluminum alloys 8091 or 7064 containing
silicon carbide particles up to 20% volume fraction. Two different ultrasonic measure-
ments. namely the acoustoelastic effect and the harmonic generation. are used for the
determination of acoustic nonlinearity parameters. Their dependence on the content of
SiC in the composite is investigated. The values of the nonlinearity parameter are tbund
to decrease with increasing volume fraction of SiC-particles. The changes are explained
in terms of the effects of SiC-particles on the second and third order elastic constants of
the composites.

Introduction

Elastic nonlinearity is responsible for the deviation ofti -material's stress-strain
response from the linear relationship represented by the isothermal form of the
generalized Hooke's law. This law can be written as

(r1 i = Cikl,.kI . |)

where ori and 41I are the stress and strain tensors respectively, and Cjikl is the
fourth order tensor which represents the second order elastic constants. The
nonlinear elastic behavior of materials can be determined from measurements
of the stress dependance of ultrasonic velocities as well as the distortion of
ultrasonic waves by the generation of higher harmonics. Consequently. these
effects can be used to characterize a material's elastic nonlinearity nondestruc-
tivcly.

In recent studies, the influence of microstructure on the acoustic nonlinear-
ity parameter has been investigated in aluminum alloys. Razvi ct all, II found a
linear correlation between the acoustic nonlinearity parameter and the volume
fraction of second phase precipitates in some heat treatable aluminum alloys,
Another correlation was found by Yost ct al. 121 between the hardness and the

* P'ern nent address: Fritunhollcr Institut Ior zerst6rungst'rcie lIrikl\'ert'ahrern ilt1), Univsr,,
Ititsgpb. 37, W-6600 Suarhrdckcn. Federal Republic of Germany
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acoustic nonlinearity parameter in maraging steel. These studies directed the
attention to similar investigations of the nonlinearity parameter in two phase
materials such as metal-matrix composites (MMC). These composites consist
of a metallic matrix and a metallic or ceramic reinforcement which can be
presented in the form of particles, short or long fibers. The properties of the
composite depend on those of the constituent phases as well as on the interac-
tion between the phases in the composite. The interaction is determined by the
geometrical arrangement of the reinforcement as well as the bond strength
between the two phases. In order to verify the desired bulk properties. the
nondestructive characterization of linear and nonlinear elastic behavior of such
composites is essential.

In this investigation, nonlinear elastic effects were determined as a function
of the SiC-particle content in the aluminum alloys 8091 and 7064 by measuring
the stress dependance of the ultrasonic velocity and the harmonic distortion of
ultrasonic waves. These measurements yield the effective second and third
order elastic constants as well as the effective acoustic nonlinearity parameter
of the composite.

Elastic Nonlinearity in Solids

All elastic properties of a solid can be derived from the elastic energy represen-
tation of that solid. In general. the strain energy of deformation per unit vol-
ume. (. can be expanded as a power series in the elastic strain. F. as

I I
({fo = + ' + + _ Cik , Cjl~i k 1 Cijklmn.F.r.•'l:r .- • • (•2

According to Brugger 131, I1), is the strain energy per unit volume in the unde-
formed state and the cocfficients C,.. in the expansion are the elastic constants.
In a linear elastic solid there are no contributions to the elastic energy from
terms higher than the power two in F. All materials, however, have anharmonic
elastic potential which is determined by the ratio of the third and the second
order contributions to the elastic energy.

In an isotropic solid, the strain energy density depends only on the invari-
ants 1,/ ,, and I of the strain tensor since the elastic constants are invariant
under arbitrary rotations. 'Murnaghan 141 writes (P for an isotropic material as

(I) 'l1o + cr l1 + x + 2 - )/ I + 2m-- - . ,

where (r is the stress. X and IA are the second order Lamd constants, and I, 11,
and n are the third order elastic constants in Murnaghan notation, The second
and third order elastic constants can be conveniently obtained from ultrasonic
measurements. The second order Lamd constants are directly related to ultra-
sonic velocities its

A pVs and X ptV. - ,)
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where p is the density and V', and VI, are the shear and the longitudinal wave
velocities. respectively.

A formalism which allows the evaluation ot'the third order elastic constants
m. m. and n from the strain dependance of'the ultrasonic velocity was developed

by Hughes and Kelly 151. In an uniaxiall' strained specimen. the velocities of
ultrasonic waves depend linearly on the elastic strain", C.'ommonly, three wave
modes are used: the two linearly polarized shear , aves and the longitudinal
wave, having polarization and propagation directions as indicated in Fig. . rhe
slopes of these linear relationships normalized with respect to the velocities in
the strain-free specimen are called acoustoclastic constants and related to the
third order elastic constants 1. m. and n as

/ - I -2t.' dV. " +I t2 , ( -V:./" * t, -dU •- 2' ., ., a

I 2 .v I di I + 11 Ile de

m 1 u)i+ v d +I + m IL:
4v tdl" /", , dv."_, d• I d V e1

"l I +2G \ -t /x " +r l , 1 .1

where Vij are the ultrasonic velocities with propagation and polarization direc-
tions as indicated in Fig. I. the superscript 0 denotes the velocity at zero strain.
and v is the Poisson's ratio.

Another method for the determination of the nonlinear elastic ettfect is the
generation of higher harmonies. An originally sinusoidal sound wave gets dis-
torted while propagating through a nonlinear material, The anharmonieitv of
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the interatomic potential function leads to the nonlinear wave equation which
can be written for a longitudinal wave propagating in an isotropic solid as 161

__,__ i2 21 + 4m 1 ii U-1
-(,k + 2g.) o 3 k -- A+ 2M61 - (6)

at - X + 2A ix Ix"

where it is the displacement and t and x are the time and space variables.
respectively. This nonlinear wave equation differs from the linear wave equa-
tion by the perturbation term on the right hand side which is determined by the
ratio of the third- and second-order elastic constants. The term in brackets in
Elq. 6 is called the acoustic nonlinearity parameter /3. and i, related to these
elastic constants as

-/3 -3 + (2/ + 4tn)/(X + 2g.). (7)

It is interesting to see fromn Eq. 6 that tile condition lor linear longitudinal wave
equation is not the third-order elastic constants to be equal to zero. but the ratio
(21 + 4n)I(A + 2/1) is equal to -3.

According to Thurston and Shapiro 161, the solution of this equation for u
can be obtained, using a perturbation technique, as

it = A, sin(o. - ks) + .4, cos(2wt - 2k..) ..... .(8)

Here. w is the frequency of the ultrasonic wave. A, is the wave number, and AI is
the amplitude of the fundamental wave. The generated, second harmonic will
have an amplitude A, and twice the fundamenta! frequency. rhe amplitude of
the second harmonic is related to the square of the fundamental amplitude as

A, = 3Ajk-x. 9)

where x is the propagation distance of the wave.
In multi phase materials such as metal-matrix composites. the constituents

may have very difTerent elastic and mechanical properties \\ hich re.aill in the
effective macroscopic properties of the composite. In general. these effective
properties are not expected to follow a linear law of mixture. Cantrell et al. I7'
showed that the effective nonlinearity parameter of multi phase materials is a
nonlinear function of the volume fraction of the participating phases. Further-
more, different phases interact with each other at the interfaces where very
high residual stresses are likely to be present. These are either compatibility
stresses due to differences in the elastic-plastic properties of the constituent
phases or thermal stresses arising from differences in tile coefficients of thermal
expansion. The lattice distortion in these phases. due to the presence of resid-
ual stresses, will additionally contribute to the effective acoustic nonlinearity
parameter of the compositc.
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Table 1. C'hemical comlposition of the investigated aluminml" ;lil0.' % II U. ;

Alloying clemenis

Alloy Si Fc Cu Mg Zr I.i Zn (' Co

A1-7064 0.05 0.10 2.(60 2.30 110.20 - 7.10 1,:12 0.22
A:-8091 0.02 0.01 1.90) 01.80 11.20 2.70 -- - -

Experimental
Specimens

In the present investigation, two metal-matrix composites with matrices of the
heat treatable aluminum alloys AI-8091 and AI-7064 are examined. Their chemi-
cal compositions are shown in Table 1. The aluminum matrices are reinforced
with globular silicon carbide (SiC) particles up to 20% volume fraction of sizes
ranging between I and 5 Am. The specimens were received as extruded rods of
I inch in diameter. Due to the manufacturing process. the particles are aligned
along the extrusion direction, while in the plane perpendicular to the extrusion
direction the particles are randomly distributed. Micrographs of' these two
planes are shown in Fig. 2 for the composite consisting of AI-8091 and 10% SiC-
particles. For harmonic generation measurements, the specimens are cut to a
length of two inches. Opposite faces are machined parallel and then polished to
optical flatness. After measuring the acoustic nonlinearity parameter, tile sides
of' the specimens were milled to a square shaped cross section in order to
measure acoustoelastic constants.

Ultrasitic Velocit~y Measurements

In order to determine the third order elastic constants, the strain dependance of
the ultrasonic velocity needs to be measured. This effect is typically in the
order of one part in M04 and requires very precise time of' flight measurements.
The system used in this investigation utilizes :he pulse-echo overlap method for
the determination of the time of' flight as described in 181. In Fig. 3, a block
diagram of' the system components is shown. Using this system, an absolute
time resolution of .+200 ps can be measuried. D)uring the time of flight measure-
merits, compressive strains aire applied to the specimen along the extrusion
direction and are varied systematically in the elastic regime. The time of flight
data are acquired by a computer and ultrasonic velocities ire calculated as a
function of the applied strain. Corrections are made for tile change in the lateral
dimension of the strained specimen which is due to the Poisson's expansion.
The linear relationship between the ultrasonic velocity and the elastic strain is
then evaluated by a least squares lit algorithm. The slope of' tie curve is nor-
malized with respect to the velocity of the unstrained specimen and is called the
acoustoclastic constant. The acoustoelastic constants of' the three wave modes
shown in Fig. I are used in the calculation of the third order elastic constants
using Lqs. 5.



I W4 Nohrhacher ;and Saan

Fig. 2. Parlicle distribution in extruded MMC s~pecimens: a extrusion direction, b tmnsverse dimc-
tion

Absolute Amplitude Mas uremennts

For thc direct measurements of the acoustic nonlinearity parameter the abso-
lute amplitudes of the fundamental and the second harmonic waves are deter-
mined. This is achieved using a capacitive detector system which is descrilbed
in dctail elsewhere (9]. Thc block diagram in Fig. 4 shows the experimental
setup schematically. For the excitation of the fundamental longitudinal wave.
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an electric 10 MHz signal is applied to a narrow band undamped lithium niobate
transducer which is bonded to the surface of the specimen. The longitudinal
wave which has a bandwidth of 200 kHz and a duration of 5 js is propagated
along the extrusion direction. The superposition of the fundamental wave and
its second harmonic is picked up by the capacitive transducer on the opposite
surface, During the measurements, the received signal is amplified and the
amplitudes of its frequency components are analyzed. These measurements are
repeated for different driving amplitudes. The amplitude of the second har-
monic is plotted vs. the square of the fundamental amplitude in Fig. 5 for t\%o of
the specimens examined in this investigation. The linear relationship betm•een
the two quantities is predicted by Eq. 9. The slope of a linear least squares fit
through the measured points is then used to evaluate the acoustic nonlinearit.
parameter /3.

Results and Discussion

For both sets of composites. the second and third order elastic constants are
calculated using measured ultrasonic velocities and their strain derivatie%,s.
respectively. Their values are listed in Table 2. It has to be noted that the third

Table 2. Second and third order elastic constant,, of MMCs

SOEC jGPal TOEC CGPa]

A A E r I i it

A\!-9091 44.9 11.0 40,.2 0. 30 118 1-78 -415

- 107 SiC 46.3 15.8 91,7 01.28 -185 -365 - 454
- 15r SiC 46.0 38. 1 96.9 0.27 -162 -360 -423
AI-7064 59.3 27.4 73.4 0.34 -324 -397 -403
-157 SiC 57.0 34.7 91.0 0.31 -215 -397 -454
-20% SiC 57.6 38.1 991 0.3(10 -214 -197 -461
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'able 3. Nonlinearity parameters of metal-matrix composites as
calculated from elastic constants and measured from harmonic gen-

eration

1,3 fEq. 12) Rel. change i3 (meas.i Rel. change

AI-8091 15-2 0% 10.2 0%
-10, SiC 12.6 17'f 8.5 171;

-15% SiC 11.5 -24% .5 -26%

AI-7064 16.6 0% 9.6 0o-
- 15%' SiC 3.0 -22, 0.9 -201"
-201/ SiC 12.1 - 27 - 5.9 - 31;

order elastic constants of the composites are determined using formulas which
were derived for isotropic materials, although the micrographs reveal some
anisotropic particle distribution. This may affect the absolute value of the third
order elastic constants determined in these composites. It is assumed, how-
ever. that changes in these values due to different particle content is not af-
fected.

The data in Table 2 indicate a considerable increase in the magnitudes of
the Young's modulus E and the shear modulus g with the SiC-particle content.
At the same time, the Poisson's ratio v is reduced. The experimental error in
these constants is estimated to be within 2%. One can also see from Table 2 that
the changes in the third order elastic constants are less pronounced. The inac-
curacy in these values is 15% for 1. 5% for m and 3% for n. Only in the case of
the constant 1. a clear influence of reinforcement is observed. Its magnitude
decreases when SiC-particles are added to the matrix. The value of the con-
stant 1. however, saturates at higher particle content in the composite. For the
constants m and n. no significant trend can be observed.

The values of the second and third order elastic constants are used to
calculate the nonlinearity parameters according to Eq. 7 and their values are
listed in Table 3. The inaccuracy in the calculated nonlinearity parameter is
estimated to be 10%. Also included in Table 3 are the values of the nonlinearity
parameter determined directly from the harmonic generation experiments.
Here, the inaccuracy is estimated to be of the order of 15%. From the data in
Table 3. one can see that both calculated and experimentally measured nonlin-
earity parameters decrease considerably with increasing particle content.

Table 3 also indicate,; that the experimentally measured values of the
acoustic nonlinearity parameter are about 50% smaller than those calculated.
This difference may be caused by the anisotropy in the elastic properties due to
the particle alignment as well as the texture in the aluminum matrix [101. The
values of the directly measured nonlinearity parameter are obtained using lon-
gitudinal waves which propagate along the extrusion direction while those
calculated are obtained using second and third order elastic constants mea-
sured in the transverse direction. Because of the strong dependence of the
nonlinearity parameter on the crystallographic orientation of single crystals.
texture is likely to introduce significant anisotropy in this parameter. Further-
more. inaccurate absolute values of the third order elastic constants. due to the
use of formulas which are only valid for isotropic materials. may contribute to
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the observed difference. Good agreement. however. is found in the relative
changes of the measured and calculated nonlinearity parameters. As can be
seen from Fig. 6. the relative change in the nonlinearity parameter with the SiC
content indicates a linear relationship between the two quantities. The relative
change is in the order of 30% over the range of 20%r' volume fraction of SiC-
particles added to the Al-alloys.

An explanation for the decreasing values of the nonlinearity parameter in
MMCs may be found by separately analvzing the contributions of the second
and the third order elastic constants shown in Eq. 7. The second order elastic
constants appear in the denominator of Eq. 7 and. accordingly. their increase
with particle content will yield a decrease in the nonlinearity parameter. The
increase in these constants is determined by the elastic moduli of the constitu-
ents of the composite as well as the interface between reinforcement and ma-
trix. Theoretically, the tipper and lower limits for the elastic moduli of two
phase materials are determined by the isostrain and isostress conditions I11].
The third order constants in the numerator of Eq. 7 decrease in magnitude as a
function of particle content and. thus. their contributions also lower the values
of the nonlinearity parameter in the composites. However. it appears that the
contributions of the second order elastic constants dominate the magnitude of
the effective nonlinearity parameter in the composite. especially at higher
amounts of reinforcement.

This analysis can also be applied to the results obtained by Razvi et al. on
AI-7075 alloys containing different amounts of second phase precipitates which
are shown in Fig. 7. Here, the nonlinearity parameter was measured using
harmonic generation and found to increase with the volume fraction of second
phase. Also included in Fig. 7 are the results obtained on the AI-7064 metal-
matrix composites. Unlike the SiC-particle reinforced AI-7064 MMCs. the
change in the second order elastic constants of AI-7075, due to the presence of
precipitates. is found to be very small Il1. On the other hand, the presence of
the second phase precipitates is responsible for a high degree of distortion in
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the matrix, which is the effective hardening mechanism in such alloys. Conse-
quently, the denominator of Eq. 9 remains approximately constant. Unfortu-
nately. the effect of second phase precipitates on the third order elastic con-
stants of Al-7075 was not determined. However. measurements of
acoustoelastic constants on steel 1121 -nd heat treatable aluminum alloys [13]
indicate that these constants increase as the amounts of second phase precipi-
tates in these alloys are increased. These results. nevert-heless. show that the
third order elastic constants in these alloys are likely to-increase as a function
of second phase precipitates. and. in turn. contribute to the increase of the
acoustic nonlinearity parameter which is opposite to that observed in ,netal-
matrix composites.

Conclusions

The second and third order elastic constants as well as the acounstic nonlinearity
parameter have been determined in metal-matrix compo,,ites consisting of SiC-
particles up to 20'- volume fraction and AI-7064 or -'.-8091. The results show
that the acoustic nonlinearity parameter is significaitly influenced by the vol-
time fraction of the second phase reinforcement present in the composite. The
third order elastic constants m and n remain 1 ochanged while the constant I as
well as the nonlinearity parameter decre::,,, as the %olumc fraction of SiC-
particles is increased. This behavior can be explained in terms of the increase of
the effective second order elastic constants and the decrease of the effective
third order elastic constants with :cinforcement. This argument can also be
used to explain the increase in the acoustic nonlinearity parameter as a function
of second phase precipitates joserved by Razvi et al. in the aluminum alloy
7075.
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